Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, ZHOU Sheng-hu, ZENG Tian-yu, DONG Yu-bin. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Mater., 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9
Citation: WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, ZHOU Sheng-hu, ZENG Tian-yu, DONG Yu-bin. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Mater., 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9

Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors

doi: 10.1016/S1872-5805(22)60586-9
More Information
  • Author Bio:

    王 帅,郭玉哲和王芳霄为共同第一作者

  • Corresponding author: DONG Yu-bin. E-mail: yubindong@sdnu.edu.cn
  • Received Date: 2021-12-02
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-01-06
  • Publish Date: 2022-02-01
  • Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are both a series of crystalline porous materials. MOFs, COFs and their derivatives have attracted much attention in energy storage devices due to their highly ordered structures, large surface areas, tunable pore sizes and topologies, and well-defined redox-active porous skeletons. They must also have structural stability, an abundance of redox-active sites and high electronic conductivity for use in high-performance supercapacitor electrodes. We review the recent research progress on the design of MOFs and COFs, and their hybrids with conductive materials (e.g. conductive polymer, graphene and carbon nanotubes), and MOF- and COF-derived carbon materials. Their chemical and physical properties, capacitive performance and structure-property relationships are discussed. Finally, the challenges and prospects of MOF- and COF-based electrode materials are presented.
  • loading
  • [1]
    Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews,2017,46(22):6816-6854. doi: 10.1039/C7CS00205J
    [2]
    Liang J, Jiang C, Wu W. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: Electrode materials and device designs[J]. Nanoscale,2019,11(15):7041-7061. doi: 10.1039/C8NR10301A
    [3]
    Li C, Yang W, He W, et al. Multifunctional surfactants for synthesizing high-performance energy storage materials[J]. Energy Storage Materials,2021,43:1-19. doi: 10.1016/j.ensm.2021.08.033
    [4]
    Chavan S, Pandey A. Prasad eknath lokhande, umesh[J]. Electrochemical Energy Reviews,2020,3(1):155-186. doi: 10.1007/s41918-019-00057-z
    [5]
    Dou Q, Park H S. Perspective on high‐energy carbon‐based supercapacitors[J]. Energy & Environmental Materials,2020,3(3):286-305.
    [6]
    Kong D, Gao Y, Xiao Z, et al. Rational design of carbon‐rich materials for energy storage and conversion[J]. Advanced Materials,2019,31(45):1804973. doi: 10.1002/adma.201804973
    [7]
    Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors[J]. Electrochemical Energy Reviews,2020,3(1):81-126. doi: 10.1007/s41918-019-00055-1
    [8]
    Pei C, Choi M S, Yu X, et al. Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors[J]. Journal of Materials Chemistry A,2021,9(14):8832-8869. doi: 10.1039/D1TA00652E
    [9]
    Wang J, Li N, Xu Y, et al. Two‐dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry[J]. Chemistry–A European Journal,2020,26(29):6402-6422. doi: 10.1002/chem.202000294
    [10]
    Tajik S, Beitollahi H, Nejad F G, et al. Recent electrochemical applications of metal–organic framework-based materials[J]. Crystal Growth & Design,2020,20(10):7034-7064.
    [11]
    Cherusseri J, Pandey D, Kumar K S, et al. Flexible supercapacitor electrodes using metal–organic frameworks[J]. Nanoscale,2020,12(34):17649-17662. doi: 10.1039/D0NR03549A
    [12]
    Wang J, Wang Y, Hu H, et al. From metal–organic frameworks to porous carbon materials: Recent progress and prospects from energy and environmental perspectives[J]. Nanoscale,2020,12(7):4238-4268. doi: 10.1039/C9NR09697C
    [13]
    Zhang Q, Xue C, Wang J, et al. Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks[J]. New Carbon Materials,2021,36(2):322-335. doi: 10.1016/S1872-5805(21)60022-7
    [14]
    Lu X F, Fang Y, Luan D, et al. Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review[J]. Nano Letters,2021,21(4):1555-1565. doi: 10.1021/acs.nanolett.0c04898
    [15]
    Guo Y, Wang K, Hong Y, et al. Recent progress on pristine two-dimensional metal-organic frameworks as active components in supercapacitors[J]. Dalton Transactions,2021,50(33):11331-11346. doi: 10.1039/D1DT01729B
    [16]
    Mohanty A, Jaihindh D P, Fu Y P, et al. An extensive review on three-dimension architectural metal-organic frameworks towards supercapacitor application[J]. Journal of Power Sources,2021,488:229444. doi: 10.1016/j.jpowsour.2020.229444
    [17]
    Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal–organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [18]
    Sanati S, Abazari R, Albero J, et al. Metal–organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(20):11048-11067. doi: 10.1002/anie.202010093
    [19]
    Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews,2013,42(2):548-568. doi: 10.1039/C2CS35072F
    [20]
    Li M, Liu J, Zhang T, et al. 2D redox‐active covalent organic frameworks for supercapacitors: Design, synthesis, and challenges[J]. Small,2021,17(22):2005073. doi: 10.1002/smll.202005073
    [21]
    Song Y, Sun Q, Aguila B, et al. Opportunities of covalent organic frameworks for advanced applications[J]. Advanced Science,2019,6(2):1801410. doi: 10.1002/advs.201801410
    [22]
    Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chemical Society Reviews,2012,41(18):6010-6022. doi: 10.1039/c2cs35157a
    [23]
    Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews,2021:6871-6913.
    [24]
    Wang D G, Qiu T, Guo W, et al. Covalent organic framework-based materials for energy applications[J]. Energy & Environmental Science,2021,14(2):688-728.
    [25]
    Liu X, Liu C F, Lai W Y, et al. Porous organic polymers as promising electrode materials for energy storage devices[J]. Advanced Materials Technologies,2020,5(9):2000154.
    [26]
    Liao C, Zuo Y, Zhang W, et al. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors[J]. Russian Journal of Electrochemistry,2013,49(10):983-986. doi: 10.1134/S1023193512080113
    [27]
    Yang J, Xiong P, Zheng C, et al. Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A,2014,2(39):16640-16644. doi: 10.1039/C4TA04140B
    [28]
    Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Chemistry A,2014,2(44):19005-19010. doi: 10.1039/C4TA04346D
    [29]
    Qu C, Jiao Y, Zhao B, et al. Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study[J]. Nano Energy,2016,26:66-73. doi: 10.1016/j.nanoen.2016.04.003
    [30]
    Jiao Y, Pei J, Yan C, et al. Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry A,2016,4(34):13344-13351. doi: 10.1039/C6TA05384J
    [31]
    Yan Y, Gu P, Zheng S, et al. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2016,4(48):19078-19085. doi: 10.1039/C6TA08331E
    [32]
    Lee D Y, Yoon S J, Shrestha N K, et al. Unusual energy storage and charge retention in Co-based metal–organic-frameworks[J]. Microporous and Mesoporous Materials,2012,153:163-165. doi: 10.1016/j.micromeso.2011.12.040
    [33]
    Liu X, Shi C, Zhai C, et al. Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS applied materials & interfaces,2016,8(7):4585-4591.
    [34]
    Yang J, Ma Z, Gao W, et al. Layered structural co‐based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry–A European Journal,2017,23(3):631-636. doi: 10.1002/chem.201604071
    [35]
    Abazari R, Sanati S, Morsali A, et al. Dual-purpose 3D pillared metal–organic framework with excellent properties for catalysis of oxidative desulfurization and energy storage in asymmetric supercapacitor[J]. ACS applied materials & interfaces,2019,11(16):14759-14773.
    [36]
    Rajak R, Saraf M, Mobin S M. Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal–organic framework for high-performance supercapacitors[J]. Inorganic chemistry,2020,59(3):1642-1652. doi: 10.1021/acs.inorgchem.9b02762
    [37]
    Ren F, Ji Y, Chen F, et al. Flower-like bimetal Ni/Co-based metal–organic-framework materials with adjustable components toward high performance solid-state supercapacitors[J]. Materials Chemistry Frontiers,2021,5(19):7333-7342. doi: 10.1039/D1QM00940K
    [38]
    Gong Y, Li J, Jiang P G, et al. Novel metal (II) coordination polymers based on N, N′-bis-(4-pyridyl) phthalamide as supercapacitor electrode materials in an aqueous electrolyte[J]. Dalton Transactions,2013,42(5):1603-1611. doi: 10.1039/C2DT31965A
    [39]
    Du M, Chen M, Yang X G, et al. A channel-type mesoporous In (iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors[J]. Journal of Materials Chemistry A,2014,2(25):9828-9834. doi: 10.1039/C4TA00963K
    [40]
    Tan Y, Zhang W, Gao Y, et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66)[J]. RSC Advances,2015,5(23):17601-17605. doi: 10.1039/C4RA11896K
    [41]
    Shinde P A, Seo Y, Lee S, et al. Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors[J]. Chemical Engineering Journal,2020,387:122982. doi: 10.1016/j.cej.2019.122982
    [42]
    Sheberla D, Sun L, Blood-Forsythe M A, et al. High electrical conductivity in Ni3 (2, 3, 6, 7, 10, 11-hexaiminotriphenylene) 2, a semiconducting metal–organic graphene analogue[J]. Journal of the American Chemical Society,2014,136(25):8859-8862. doi: 10.1021/ja502765n
    [43]
    Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature materials,2017,16(2):220-224. doi: 10.1038/nmat4766
    [44]
    Li W H, Ding K, Tian H R, et al. Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials,2017,27(27):1702067. doi: 10.1002/adfm.201702067
    [45]
    Duan H, Zhao Z, Lu J, et al. When conductive MOFs meet MnO2: High electrochemical energy storage performance in an aqueous asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces,2021,13(28):33083-33090.
    [46]
    Wang M, Shi H, Zhang P, et al. Phthalocyanine‐based 2D conjugated metal‐organic framework nanosheets for high‐performance micro‐supercapacitors[J]. Advanced Functional Materials,2020,30(30):2002664. doi: 10.1002/adfm.202002664
    [47]
    Zhao W, Chen T, Wang W, et al. Layer‐by‐layer 2D ultrathin conductive Cu3 (HHTP)2 film for high‐performance flexible transparent supercapacitors[J]. Advanced Materials Interfaces,2021,8(11):2100308. doi: 10.1002/admi.202100308
    [48]
    Wang H, Zhu Q L, Zou R, et al. Metal-organic frameworks for energy applications[J]. Chem,2017,2(1):52-80. doi: 10.1016/j.chempr.2016.12.002
    [49]
    Choi K M, Jeong H M, Park J H, et al. Supercapacitors of nanocrystalline metal–organic frameworks[J]. ACS nano,2014,8(7):7451-7457. doi: 10.1021/nn5027092
    [50]
    Azadfalah M, Sedghi A, Hosseini H, et al. Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors[J]. Journal of Energy Storage,2021,33:101925. doi: 10.1016/j.est.2020.101925
    [51]
    Liu Y, Li S, Wang C, et al. Accordion-like bimetal-organic framework anchoring on the partially-exfoliated graphite paper for high-performance supercapacitors[J]. Applied Surface Science,2020,528:146954. doi: 10.1016/j.apsusc.2020.146954
    [52]
    Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A,2015,3(26):13874-13883. doi: 10.1039/C5TA02461G
    [53]
    Yang J, Li P, Wang L, et al. In-situ synthesis of Ni-MOF@ CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density[J]. Journal of Electroanalytical Chemistry,2019,848:113301. doi: 10.1016/j.jelechem.2019.113301
    [54]
    Fu D, Zhou H, Zhang X M, et al. Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically‐codeposited PEDOT‐GO[J]. ChemistrySelect,2016,1(2):285-289. doi: 10.1002/slct.201600084
    [55]
    Chen K, Zhao S, Sun J, et al. Enhanced capacitance performance by coupling 2D conductive metal–organic frameworks and conducting polymers for hybrid supercapacitors[J]. ACS Applied Energy Materials,2021,4(9):9534-9541. doi: 10.1021/acsaem.1c01694
    [56]
    Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society,2015,137(15):4920-4923. doi: 10.1021/jacs.5b01613
    [57]
    Yue T, Hou R, Liu X, et al. Hybrid architecture of a porous polypyrrole scaffold loaded with metal–organic frameworks for flexible solid-state supercapacitors[J]. ACS Applied Energy Materials,2020,3(12):11920-11928. doi: 10.1021/acsaem.0c02062
    [58]
    Srimuk P, Luanwuthi S, Krittayavathananon A, et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta,2015,157:69-77. doi: 10.1016/j.electacta.2015.01.082
    [59]
    Tian D, Ao Y, Li W, et al. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,603:199-209. doi: 10.1016/j.jcis.2021.05.138
    [60]
    Liu Y, Xu X, Shao Z. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Materials,2020,26:1-22. doi: 10.1016/j.ensm.2019.12.019
    [61]
    Liu N, Liu X, Pan J. A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy[J]. Journal of Colloid and Interface Science,2022,606:1364-1373. doi: 10.1016/j.jcis.2021.08.105
    [62]
    Chen Y, Huang D, Lei L, et al. Hierarchical urchin-like amorphous carbon with Co-adding anchored on nickel foam: A free-standing electrode for advanced asymmetrical supercapacitors and adsorbed Pb (II)[J]. Journal of Colloid and Interface Science,2021,603:58-69. doi: 10.1016/j.jcis.2021.06.080
    [63]
    He F, Li K, Cong S, et al. Design and synthesis of N-doped carbon skeleton assembled by carbon nanotubes and graphene as a high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials,2021,4(8):7731-7742. doi: 10.1021/acsaem.1c01094
    [64]
    Pokharel J, Gurung A, Baniya A, et al. MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode[J]. Electrochimica Acta,2021,394:139058. doi: 10.1016/j.electacta.2021.139058
    [65]
    Gang X, Krishnamoorthy M, Jiang W, et al. A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors[J]. Carbon,2021,171:62-71. doi: 10.1016/j.carbon.2020.09.004
    [66]
    Zeng S, Huang X, Ma Y, et al. A review of covalent organic framework electrode materials for rechargeable metal-ion batteries[J]. New Carbon Materials,2021,36(1):1-18. doi: 10.1016/S1872-5805(21)60001-X
    [67]
    Arjun H, Meena G, Abdul K M, et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors[J]. Journal of the American Chemical Society,2018,140(35):10941-10945. doi: 10.1021/jacs.8b06460
    [68]
    Abdul K M, Vidyanand V, Suvendu K, et al. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2018,10(33):28139-28146.
    [69]
    Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications[J]. ACS Applied Materials & Interfaces,2019,11(29):26355-26363.
    [70]
    Xiong S, Liu J, Wang Y, et al. Solvothermal synthesis of triphenylamine-based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes[J]. Journal of Applied Polymer Science,2022,139(3):51510. doi: 10.1002/app.51510
    [71]
    Ahmed F M E, Ying-Hui H, Tharwat H M, et al. Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,103:199-208. doi: 10.1016/j.jtice.2019.07.016
    [72]
    Kandambeth S, Jia J, Wu H, et al. Covalent organic frameworks as negative electrodes for high‐performance asymmetric supercapacitors[J]. Advanced Energy Materials,2020,10(38):2001673. doi: 10.1002/aenm.202001673
    [73]
    Li T, Yan X, Zhang W D, et al. A 2D donor-acceptor covalent organic framework with charge transfer for supercapacitors[J]. Chemical Communications,2020,56(91):14187-14190. doi: 10.1039/D0CC04109B
    [74]
    Li T, Yan X, Liu Y, et al. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors[J]. Polymer Chemistry,2020,11(1):47-52. doi: 10.1039/C9PY01623F
    [75]
    Li L, Lu F, Guo H, et al. A new two-dimensional covalent organic framework with intralayer hydrogen bonding as supercapacitor electrode material[J]. Microporous and Mesoporous Materials,2021,312:110766. doi: 10.1016/j.micromeso.2020.110766
    [76]
    Zhuang X D, Zhao W X, Zhang F, et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton[J]. Polymer Chemistry,2016,7:4176. doi: 10.1039/C6PY00561F
    [77]
    Xu J S, He Y F, Bi S, et al. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor[J]. Angew. Chem Int Ed,2019,58:12065.
    [78]
    Zhang F, Wei S C, Wei W W, et al. Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers[J]. Science Bulletin,2020,65(19):1659-1666. doi: 10.1016/j.scib.2020.05.033
    [79]
    Yang Z, Liu J, Li Y, et al. Arylamine‐linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage[J]. Angewandte Chemie International Edition,2021,60(38):20754-20759. doi: 10.1002/anie.202108684
    [80]
    Wu Y, Yan D, Zhang Z, et al. Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage[J]. ACS applied materials & interfaces,2019,11(8):7661-7665.
    [81]
    Liu S, Yao L, Lu Y, et al. All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors[J]. Materials Letters,2019,236:354-357. doi: 10.1016/j.matlet.2018.10.131
    [82]
    Peng H, Raya J, Richard F, et al. Synthesis of robust MOFs@ COFs porous hybrid materials via an Aza‐diels–alder reaction: Towards high‐performance supercapacitor materials[J]. Angewandte Chemie International Edition,2020,59(44):19602-19609. doi: 10.1002/anie.202008408
    [83]
    Colson J W, Woll A R, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science,2011,332(6026):228-231. doi: 10.1126/science.1202747
    [84]
    Wang C, Liu F, Chen J, et al. A graphene-covalent organic framework hybrid for high-performance supercapacitors[J]. Energy Storage Materials,2020,32:448-457. doi: 10.1016/j.ensm.2020.07.001
    [85]
    An N, Guo Z, Xin J, et al. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2021,9(31):16824-16833. doi: 10.1039/D1TA04313G
    [86]
    Wang P, Wu Q, Han L, et al. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes[J]. Rsc advances,2015,5(35):27290-27294. doi: 10.1039/C5RA02251G
    [87]
    Zha Z, Xu L, Wang Z, et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media[J]. ACS applied materials & interfaces,2015,7(32):17837-17843.
    [88]
    Zhao X, Sajjad M, Zheng Y, et al. Covalent organic framework templated ordered nanoporous C60 as stable energy efficient supercapacitor electrode material[J]. Carbon,2021,182:144-154. doi: 10.1016/j.carbon.2021.05.061
    [89]
    Tang J, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nature Electronics,2018,1(3):191-196. doi: 10.1038/s41928-018-0038-8
    [90]
    Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. Journal of the American Chemical Society,2016,138(24):7673-7680. doi: 10.1021/jacs.6b03348
    [91]
    Wang Y, Qu Q, Gao S, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon,2019,155:706-726. doi: 10.1016/j.carbon.2019.09.018
    [92]
    Duan Q, Wang S, Wang Q, et al. Simultaneous improvement on strength, modulus, and elongation of carbon nanotube films functionalized by hyperbranched polymers[J]. ACS applied materials & interfaces,2019,11(39):36278-36285.
    [93]
    Xu Z, Liu Y, Wu Z, et al. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode[J]. Chemical Engineering Journal,2020,387:124071. doi: 10.1016/j.cej.2020.124071
    [94]
    Sun B, Liu J, Cao A, et al. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance[J]. Chemical Communications,2017,53(47):6303-6306. doi: 10.1039/C7CC01902E
    [95]
    Yang Y, Zhang P, Hao L, et al. Grotthuss proton‐conductive covalent organic frameworks for efficient proton pseudocapacitors[J]. Angewandte Chemie,2021,133(40):22009-22016. doi: 10.1002/ange.202105725
    [96]
    Zhu X, Tian C, Veith G M, et al. In situ doping strategy for the preparation of conjugated triazine frameworks displaying efficient CO2 capture performance[J]. Journal of the American Chemical Society,2016,138(36):11497-11500. doi: 10.1021/jacs.6b07644
    [97]
    Yu S Y, Mahmood J, Noh H J, et al. Direct synthesis of a covalent triazine‐based framework from aromatic amides[J]. Angewandte Chemie International Edition,2018,57(28):8438-8442. doi: 10.1002/anie.201801128
    [98]
    Lu C, Yang J, Wei S, et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion[J]. Advanced Functional Materials,2019,29(10):1806884. doi: 10.1002/adfm.201806884
    [99]
    Liu M, Guo L, Jin S, et al. Covalent triazine frameworks: Synthesis and applications[J]. Journal of Materials Chemistry A,2019,7(10):5153-5172. doi: 10.1039/C8TA12442F
    [100]
    Talapaneni S N, Hwang T H, Je S H, et al. Elemental‐sulfur‐mediated facile synthesis of a covalent triazine framework for high‐performance lithium–sulfur batteries[J]. Angewandte Chemie International Edition,2016,55(9):3106-3111. doi: 10.1002/anie.201511553
    [101]
    Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition,2008,47(18):3450-3453. doi: 10.1002/anie.200705710
    [102]
    Li Y, Zheng S, Liu X, et al. Conductive microporous covalent triazine‐based framework for high‐performance electrochemical capacitive energy storage[J]. Angewandte Chemie,2018,130(27):8124-8128. doi: 10.1002/ange.201711169
    [103]
    Deka N, Patidar R, Kasthuri S, et al. Triazine based polyimide framework derived N-doped porous carbons: A study of their capacitive behaviour in aqueous acidic electrolyte[J]. Materials Chemistry Frontiers,2019,3(4):680-689. doi: 10.1039/C8QM00641E
    [104]
    Hao L, Ning J, Luo B, et al. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors[J]. Journal of the American Chemical Society,2015,137(1):219-225. doi: 10.1021/ja508693y
    [105]
    Wu C, Zhang H, Hu M, et al. In situ nitrogen‐doped covalent triazine‐based multiporous cross‐linking framework for high‐performance energy storage[J]. Advanced Electronic Materials,2020,6(7):2000253. doi: 10.1002/aelm.202000253
    [106]
    Gao Y, Zhi C, Cui P, et al. Halogen-functionalized triazine-based organic frameworks towards high performance supercapacitors[J]. Chemical Engineering Journal,2020,400:125967. doi: 10.1016/j.cej.2020.125967
    [107]
    Mohapatra J, Elkins J, Xing M, et al. Magnetic-field-induced self-assembly of FeCo/CoFe2O4 core/shell nanoparticles with tunable collective magnetic properties[J]. Nanoscale,2021,13(8):4519-4529. doi: 10.1039/D1NR00136A
    [108]
    Vadiyar M M, Liu X, Ye Z. Macromolecular polyethynylbenzonitrile precursor-based porous covalent triazine frameworks for superior high-rate high-energy supercapacitors[J]. ACS applied materials & interfaces,2019,11(49):45805-45817.
    [109]
    Wang D G, Wang H, Lin Y, et al. Synthesis and morphology evolution of ultrahigh content nitrogen‐doped, micropore‐dominated carbon materials as high‐performance supercapacitors[J]. ChemSusChem,2018,11(22):3932-3940. doi: 10.1002/cssc.201801892
    [110]
    Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications[J]. ACS applied materials & interfaces,2019,11(29):26355-26363.
    [111]
    El‐Mahdy A F M, Hung Y H, Mansoure T H, et al. A hollow microtubular triazine‐and benzobisoxazole‐based covalent organic framework presenting sponge‐like shells that functions as a high‐performance supercapacitor[J]. Chemistry–An Asian Journal,2019,14(9):1429-1435. doi: 10.1002/asia.201900296
    [112]
    Bhanja P, Bhunia K, Das S K, et al. A new triazine‐based covalent organic framework for high‐performance capacitive energy storage[J]. ChemSusChem,2017,10(5):921-929. doi: 10.1002/cssc.201601571
    [113]
    Wang Y, Hao L, Zeng Y, et al. Three-dimensional hierarchical porous carbon derived from resorcinol formaldehyde-zinc tatrate/poly (styrene-maleic anhydride) for high performance supercapacitor electrode[J]. Journal of Alloys and Compounds,2021,886:161176. doi: 10.1016/j.jallcom.2021.161176
    [114]
    Zhao Y, Bu N, Shao H, et al. A carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance[J]. New Journal of Chemistry,2019,43(46):18158-18164. doi: 10.1039/C9NJ04038B
    [115]
    Kim G, Yang J, Nakashima N, et al. Highly microporous nitrogen‐doped carbon synthesized from azine‐linked covalent organic framework and its supercapacitor function[J]. Chemistry–A European Journal,2017,23(69):17504-17510. doi: 10.1002/chem.201702805
    [116]
    Zhu D, Jiang J, Sun D, et al. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(26):12334-12343. doi: 10.1039/C8TA02341G
    [117]
    Xue R, Gou H, Liu Y, et al. A layered triazinyl-COF linked by− NH− linkage and resulting N-doped microporous carbons: preparation, characterization and application for supercapacitance[J]. Journal of Porous Materials,2021,28(3):895-903. doi: 10.1007/s10934-021-01046-8
    [118]
    Huang Y B, Pachfule P, Sun J K, et al. From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach[J]. Journal of Materials Chemistry A,2016,4(11):4273-4279. doi: 10.1039/C5TA10170K
    [119]
    Umezawa S, Douura T, Yoshikawa K, et al. Supercapacitor electrode with high charge density based on boron-doped porous carbon derived from covalent organic frameworks[J]. Carbon,2021,184:418-425. doi: 10.1016/j.carbon.2021.08.022
    [120]
    Zhou Z, Zhang X, Xing L, et al. Copper-assisted thermal conversion of microporous covalent melamine-boroxine frameworks to hollow B, N-codoped carbon capsules as bifunctional metal-free electrode materials[J]. Electrochimica Acta,2019,298:210-218. doi: 10.1016/j.electacta.2018.12.080
    [121]
    Li T, Zhang W D, Liu Y, et al. A two-dimensional semiconducting covalent organic framework with nickel (ii) coordination for high capacitive performance[J]. Journal of Materials Chemistry A,2019,7(34):19676-19681. doi: 10.1039/C9TA07194F
    [122]
    Romero J, Rodriguez-San-Miguel D, Ribera A, et al. Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene[J]. Journal of Materials Chemistry A,2017,5(9):4343-4351. doi: 10.1039/C6TA09296A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(2255) PDF Downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return