Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
YU Qiong, WANG Yong-zhi, MENG Meng, SHEN Shu-ling, TANG Zhi-hong, YANG Jun-he. Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode. New Carbon Mater., 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7
Citation: YU Qiong, WANG Yong-zhi, MENG Meng, SHEN Shu-ling, TANG Zhi-hong, YANG Jun-he. Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode. New Carbon Mater., 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7

Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode

doi: 10.1016/S1872-5805(22)60599-7
More Information
  • Author Bio:

    于 琼. E-mail:2388860345@qq.com

  • Corresponding author: TANG Zhi-hong, Associate Professor. E-mail: zhtang@usst.edu.cn
  • Received Date: 2020-11-18
  • Rev Recd Date: 2021-04-10
  • Available Online: 2022-01-05
  • Publish Date: 2022-06-01
  • The low volumetric capacity and sluggish diffusion of ions at high mass loadings of active materials per area limit any improvement of the energy and power densities of supercapacitors. A mixture of graphene oxide (GO) and urea in water was treated by an ultrasonic atomizer to form aerosol droplets, which were dried to obtain crumpled GO/urea particles. Crumpled graphene with a nitrogen content of 11.38% was obtained by the thermal shocking of these particles at 600 °C for 50 s. A volumetric capacitance of 384.0 F cm−3 was achieved when the crumpled graphene was used as supercapacitor electrodes. Even at a high current density (10 A g−1) and a high loading (74.3 mg/cm2 electrode), the specific capacitance retention still remained high. It is proposed that N-doping in the forms of pyrrole, imide, lactam and other types of pyridine-like nitrogen, and high surface area of the sample were key factors in improving the capacitance. The crumpled structure provided high mass transfer and high accessibility of ions to the active surface.
  • loading
  • [1]
    Yang X D, Li Y L, Zhang P X, et al. Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor[J]. Carbon,2020,157:70-79. doi: 10.1016/j.carbon.2019.10.008
    [2]
    Du J, Zhang Y, Wu H X, et al. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitor[J]. Carbon,2020,156:523-528. doi: 10.1016/j.carbon.2019.09.091
    [3]
    Son I S, Oh Y, Yi S H, et al. Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors[J]. Carbon,2020,159:283-291. doi: 10.1016/j.carbon.2019.12.049
    [4]
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [5]
    Liu M J, Wei F, Yang X M, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33(4):316-323. doi: 10.1016/S1872-5805(18)60342-7
    [6]
    Yang Z, Yang Y, Lu C X, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [7]
    Zhang H F, Xiao D J, Li Q, et al. Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density[J]. Journal of Energy Chemistry,2018,27(1):195-202. doi: 10.1016/j.jechem.2017.10.034
    [8]
    Choudhury A, Dey B, Mahapatra S S, et al. Flexible and freestanding supercapacitor based on nanostructured poly (m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities[J]. Nanotechnology,2018,29:165401. doi: 10.1088/1361-6528/aaa7e3
    [9]
    Ma H Y, Kong D B, Xu Y, et al. Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor[J]. Small,2017,13(30):1701026. doi: 10.1002/smll.201701026
    [10]
    Liu Y, Jiao Y, Zhang Z L, et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications[J]. ACS Applied Materials & Interfaces,2014,6:2174-2184.
    [11]
    Chen M J, Wang J Y, Tang H J, et al. Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification[J]. Inorganic Chemistry Frontiers,2016,3:1065-1070. doi: 10.1039/C6QI00083E
    [12]
    Xia H, Meng Y S, Yuan G L, et al. A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte[J]. Electrochemical and Solid-State Letters,2012,15(4):A60-A63. doi: 10.1149/2.023204esl
    [13]
    Kim S I, Lee J S, Ahn H J, et al. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology[J]. ACS Applied Materials & Interfaces,2013,5:1596-1603.
    [14]
    Li J, Hao H L, Wang J J, et al. 3D Nitrogen-enriched graphene porous graphene hydrogel for high-performance supercapacitor[J]. Materials Science and Engineering,2019,490:022069.
    [15]
    Gopalsamy K, Yang Q Y, Cai S Y, et al. Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors[J]. Journal of Energy Chemistry,2019,34:104-110. doi: 10.1016/j.jechem.2018.10.007
    [16]
    Ji Y J, Deng Y L, Chen F, et al. Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitor[J]. Carbon,2020,156:359-369. doi: 10.1016/j.carbon.2019.09.064
    [17]
    Li Y, Ma W S, Sun J, et al. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo[J]. Carbon,2020,159:149-160. doi: 10.1016/j.carbon.2019.11.093
    [18]
    Liu Y, Hao X Q, Wang L K, et al. Facile synthesis of porous carbon materials with extra high nitrogen content for supercapacitor electrodes[J]. New Journal of Chemistry,2019,43:3713-3718. doi: 10.1039/C8NJ05718D
    [19]
    Xu F, Ding B C, Qiu Y Q, et al. Hollow carbon nanospheres with developed porous structure and retained N doping for facilitated electrochemical energy storage[J]. Langmuir,2019,35:12889-12897. doi: 10.1021/acs.langmuir.8b03973
    [20]
    Wang J S, Qin F F, Guo Z Y, et al. Oxygen- and nitrogen-enriched honeycomb-like porous carbon from laminaria japonica with excellent supercapacitor performance in aqueous solution[J]. ACS Sustainable Chemistry & Engineering,2019,7:11550-11563.
    [21]
    Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports,2013,3:2975. doi: 10.1038/srep02975
    [22]
    Zhang Y, Wen G W, Fan S, et al. Phenolic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with significantly enhanced electrochemical performance[J]. Journal of Power Sources,2019,435:226799. doi: 10.1016/j.jpowsour.2019.226799
    [23]
    Xu Y, Tao Y, Zheng X Y, et al. A metal‐free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3[J]. Advanced materials,2015,27:8082-8087. doi: 10.1002/adma.201504151
    [24]
    Fan Z M, Cheng Z J, Feng J Y, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry A,2017,A:516689.
    [25]
    Dong Y, Zhu J Y, Li Q Q, et al. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications[J]. Journal of Materials Chemistry A,2020,8:21930-21946. doi: 10.1039/D0TA08265A
    [26]
    Mao S, Wen Z H, Bo Z, et al. Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors[J]. ACS Applied Materials & Interfaces,2014,6:9881-9889.
    [27]
    Ma Y X, Li X P, Shao W J, et al. Fabrication of 3D porous polyvinyl alcohol/sodium alginate/graphene oxide spherical composites for the adsorption of methylene blue[J]. Journal of nanoscience and nanotechnology,2020,20:2205-2213. doi: 10.1166/jnn.2020.17193
    [28]
    Mou Z G, Chen X Y, Du Y K, et al. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea[J]. Applied Surface Science,2011,258:1704-1710. doi: 10.1016/j.apsusc.2011.10.019
    [29]
    Sun L, Wang L, Tian C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage[J]. Royal Society of Chemistry Advances,2012,2:4498-4506.
    [30]
    Xiao N, Lau D, Shi W H, et al. A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode[J]. Carbon,2013,57:184-190. doi: 10.1016/j.carbon.2013.01.062
    [31]
    Jun Y S, Lee E Z, Wang X C, et al. From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres[J]. Advanced Functional Materials,2013,23:3661-3667. doi: 10.1002/adfm.201203732
    [32]
    Lei Z B, Lu L, Zhao X S. The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy & Environmental Science,2012,5:6391-6399.
    [33]
    Yuan K, Xu Y Z, Uihlein J, et al. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors[J]. Advanced Materials,2015,27:6714-6721. doi: 10.1002/adma.201503390
    [34]
    Sun L, Wang L, Tian C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage[J]. Royal Society of Chemistry Advances,2012,2:4498-4506.
    [35]
    Xu X, Zhou Y, Yuan K T, et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea[J]. Electrochim Acta,2013,112:587-595. doi: 10.1016/j.electacta.2013.09.038
    [36]
    Lister M W. Some observations on cyanic acid and cyanates[J]. Canadian Journal of Chemistry,1955,33:426-440. doi: 10.1139/v55-050
  • 20200221-Supporting information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(387) PDF Downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return