Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater., 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3
Citation: YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater., 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3

Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries

doi: 10.1016/S1872-5805(22)60607-3
More Information
  • Author Bio:

    叶 鑫、李质奇为共同第一作者

  • Corresponding author: ZHENG Shi-you, Professor. E-mail: syzheng@usst.edu.cn
  • Received Date: 2021-12-03
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-04-01
  • Publish Date: 2022-11-28
  • With the rapid development of electric vehicles and large-scale power grids, lithium-ion batteries inevitably face the problem that their limited energy density and high cost cannot meet the growing demand. Room temperature sodium-sulfur (RT Na-S) batteries, which have the potential to replace lithium-ion batteries, have become a focus of attention. However, the challenging problem of their poor cycling performance cause by the “shuttle effect” of the reaction intermediates (sodium polysulfides) needs to be addressed. We report a method to incorporate TiO2 nano particles into the multichannels of electrospun carbon fibers (TiO2@MCCFs) to stabilize the sulfur compounds and produce high-performance RT Na-S batteries. The TiO2@MCCFs were prepared by electrospinning followed by heat treatment, and were infiltrated by molten sulfur to fabricate S/TiO2@MCCF cathode materials. The addition of the TiO2 nanoparticles increases the affinity of cathode materials for polysulfides and promotes the conversion of polysulfides to lower order products. This was verified by DFT calculations. A S/TiO2@MCCF cathode with a S content of 54% has improved electrochemical rate and cycling performance, with a specific capacity of 445.1 mAh g−1 after 100 cycles at 0.1 A g−1 and a nearly 100% Coulombic efficiency. Even at 2 A g−1, the cathode still has a capacity of 300.5 mAh g−1 after 500 cycles. This work provides a new way to construct high performance RT Na-S battery cathodes.
  • loading
  • [1]
    Balogun M S, Yang H, Luo Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy and Environmental Science,2018,11:1859-1869. doi: 10.1039/C8EE00522B
    [2]
    Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy,2016,1:16071. doi: 10.1038/nenergy.2016.71
    [3]
    Turcheniuk K, Bondarev D, Singhal V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature,2018,559:467-470. doi: 10.1038/d41586-018-05752-3
    [4]
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334:928-935. doi: 10.1126/science.1212741
    [5]
    Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36:711-728. doi: 10.1016/S1872-5805(21)60081-1
    [6]
    Beaudin M, Zareipour H, Schellenberglabe A, et al. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy for Sustainable Development,2010,14:302-314. doi: 10.1016/j.esd.2010.09.007
    [7]
    Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7:19. doi: 10.1038/nchem.2085
    [8]
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8:500-506. doi: 10.1038/nmat2460
    [9]
    Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36:106-116. doi: 10.1016/S1872-5805(21)60008-2
    [10]
    Salama M, Rosy, Attias R, et al. Metal-sulfur batteries: Overview and research methods[J]. ACS Energy Letters,2019,4:436-446. doi: 10.1021/acsenergylett.8b02212
    [11]
    Yu X, Manthiram A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries[J]. ChemElectroChem,2014,1:1275-1280. doi: 10.1002/celc.201402112
    [12]
    Kim H, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews,2013,42:9011-9034. doi: 10.1039/c3cs60177c
    [13]
    Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42:3018-3032. doi: 10.1039/c2cs35256g
    [14]
    Lu Y, Liang J, Hu Y, et al. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism[J]. Advanced Energy Materials,2020,10:1903312. doi: 10.1002/aenm.201903312
    [15]
    Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials,2019,31:1901125. doi: 10.1002/adma.201901125
    [16]
    Wang Y X, Lai W H, Chou S L, et al. Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries[J]. Advanced Materials,2020,32:1903952. doi: 10.1002/adma.201903952
    [17]
    Hueso K B, Armand M, Rojo T. High temperature sodium batteries: Status, challenges and future trends[J]. Energy and Environmental Science,2013,6:734-749. doi: 10.1039/c3ee24086j
    [18]
    Manthiram A, Yu X. Ambient temperature sodium-sulfur batteries[J]. Small,2015,11:2108-2114. doi: 10.1002/smll.201403257
    [19]
    Wang Y X, Zhang B, Lai W, Xu Y, et al. Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry[J]. Advanced Energy Materials,2017,7:1602829. doi: 10.1002/aenm.201602829
    [20]
    Yang F, Mousavie S M A, et al. Sodium-sulfur flow battery for low-cost electrical storage[J]. Advanced Energy Materials,2018,8:1701991. doi: 10.1002/aenm.201701991
    [21]
    Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie - International Edition,2013,52:13186-13200. doi: 10.1002/anie.201304762
    [22]
    Seh Z W, Sun J, Sun Y, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science,2015,1:449-455. doi: 10.1021/acscentsci.5b00328
    [23]
    Ma D, Li Y, Yang J, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: Toward ultrastable free-standing room temperature sodium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1705537. doi: 10.1002/adfm.201705537
    [24]
    Yu X, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries[J]. The Journal of Physical Chemistry Letters,2014,5:1943-1947. doi: 10.1021/jz500848x
    [25]
    Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J]. Journal of Power Sources,2011,196:5186-5190. doi: 10.1016/j.jpowsour.2011.01.109
    [26]
    Wang Y, Zhou D, Palomares V, et al. Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review[J]. Energy and Environmental Science,2020,13:3848-3879. doi: 10.1039/D0EE02203A
    [27]
    Zhang S, Yao Y, Yu Y. Frontiers for room-temperature sodium–sulfur batteries[J]. ACS Energy Letters,2021,6:529-536. doi: 10.1021/acsenergylett.0c02488
    [28]
    Du W, Wu Y, Yang T, et al. Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries[J]. Chemical Engineering Journal,2020,379:122359. doi: 10.1016/j.cej.2019.122359
    [29]
    Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature[J]. Nano Letters,2013,13:4532-4538. doi: 10.1021/nl402513x
    [30]
    Zhang B W, Sheng T, Liu Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications,2018,9:4082. doi: 10.1038/s41467-018-06144-x
    [31]
    Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries[J]. New Carbon Materials,2020,35:630-645. doi: 10.1016/S1872-5805(20)60519-4
    [32]
    Chen S, Bao P, Wang G. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage[J]. Nano Energy,2013,2:425-434. doi: 10.1016/j.nanoen.2012.11.012
    [33]
    Chen Y, Shi L, Guo S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5:19866-19874. doi: 10.1039/C7TA06453E
    [34]
    Xiong S, Fan J, Wang Y, et al. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2017,5:18242-18252. doi: 10.1039/C7TA05880B
    [35]
    Wu H B, Wei S, Zhang L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry,2013,19:10804-10808. doi: 10.1002/chem.201301689
    [36]
    Xu Y, Yuan T, Zhao Y H, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2020,7:1901829. doi: 10.1002/admi.201901829
    [37]
    Xu X, Zhou D, Qin X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance[J]. Nature Communications,2018,9:3870. doi: 10.1038/s41467-018-06443-3
    [38]
    Ryu J, Kumar R S, Son Y A. Robust photodegradation of methylene blue with the biphenyl-porphyrin/TiO2 photocatalyst under visible light condition[J]. Journal of Nanoscience and Nanotechnology,2020,20:6266-6273. doi: 10.1166/jnn.2020.18518
    [39]
    Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Mater,2002,14:2717-2744. doi: 10.1088/0953-8984/14/11/301
    [40]
    Fan F Y, Carter W C, Chiang Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials,2015,27:5203-5209. doi: 10.1002/adma.201501559
  • Supporting Information-20210292.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(460) PDF Downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return