Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Ming-hui, XU Wen, WU Li-sha, DONG Yan-feng. Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors. New Carbon Mater., 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5
Citation: ZHANG Ming-hui, XU Wen, WU Li-sha, DONG Yan-feng. Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors. New Carbon Mater., 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5

Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors

doi: 10.1016/S1872-5805(22)60611-5
Funds:  This work was financially supported by LiaoNing Revitalization Talents Program (XLYC2007129), the Natural Science Foundation of Liaoning Province (2020-MS-095), the Fundamental Research Funds for the Central Universities of China (N2105008), and the CAS Key Laboratory of Carbon Materials (KLCMKFJJ2004)
More Information
  • Author Bio:

    张明慧、徐文为共同第一作者

  • Corresponding author: DONG Yan-feng, Associate Professor. E-mail: dongyanfeng@mail.neu.edu.cn
  • Received Date: 2022-03-02
  • Rev Recd Date: 2022-04-19
  • Available Online: 2022-04-27
  • Publish Date: 2022-06-01
  • Aqueous zinc-ion hybrid capacitors (ZHCs) have an intrinsic safety and low cost, and are promising for use in large-scale energy storage devices. However, traditional porous carbon cathodes have inappropriate pore structures for zinc ion storage and diffusion. Moreover, zinc foil anodes suffer from the growth of Zn dendrites and side reactions, so that traditional ZHCs usually have a non-competitive energy density and unsatisfactory service life, seriously inhibiting their practical use. Two-dimensional transition metal carbide/nitride MXenes with a highly conductive matrix and abundant surface functional groups are good choices for constructing high-capacity cathodes and long-life Zn anodes for high-performance ZHCs. Recent progress in MXene-based nanomaterials as electrode materials of advanced ZHCs is summarized. The fundamentals of ZHCs are first introduced, such as working principles and key electrochemical parameters. The use of various MXene-based cathodes and anodes in high-performance aqueous ZHCs are then considered and, finally, the challenges and prospects for MXene-based nanomaterials for next-generation ZHCs are briefly discussed.
  • loading
  • [1]
    Chen H, Zheng Y, Zhu X Q, et al. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors[J]. Materials Research Bulletin,2021,139:111281. doi: 10.1016/j.materresbull.2021.111281
    [2]
    Han L, Huang H L, Li J F, et al. A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition[J]. Journal of Materials Chemistry A,2020,8(30):15042-15050. doi: 10.1039/D0TA03547E
    [3]
    Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review[J]. Advanced Energy Materials,2021,11(14):2003994. doi: 10.1002/aenm.202003994
    [4]
    Lu W, Yang Y, Zhang T, et al. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors[J]. Journal of Colloid and Interface Science,2021,590:226-237. doi: 10.1016/j.jcis.2021.01.050
    [5]
    Yuan Z, Wang H, Shen J, et al. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Materials Chemistry A,2020,8(42):22163-22174. doi: 10.1039/D0TA08006C
    [6]
    Zhang Z K, Zhang H X, Hou Y, et al. One-step synthesis of CeFeO3 nanoparticles on porous-rich nanocarbon frameworks derived from ZIF-8 for boosted oxygen reduction reaction in pH value universal electrolytes[J]. J Mater Chem A,2022. doi: 10.1039/D2TA02764J
    [7]
    Panja T, Ajuria J, Díez N, et al. Fabrication of high-performance dual carbon Li-ion hybrid capacitor: Mass balancing approach to improve the energy-power density and cycle life[J]. Scientific Reports,2020,10(1):1-11. doi: 10.1038/s41598-019-56847-4
    [8]
    Kim Y, Woo S C, Lee C S, et al. Electrochemical investigation on high-rate properties of graphene nanoplatelet-carbon nanotube hybrids for Li-ion capacitors[J]. Journal of Electroanalytical Chemistry,2020,863:114060. doi: 10.1016/j.jelechem.2020.114060
    [9]
    Luo S N, Yuan T, Soule L K, et al. Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors[J]. Advanced Functional Materials,2020,30(5):1908309. doi: 10.1002/adfm.201908309
    [10]
    Huang F, Liu W, Wang Q, et al. Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors[J]. Electrochimica Acta,2020,354:136701. doi: 10.1016/j.electacta.2020.136701
    [11]
    Li Y, Lu P, Shang P, et al. Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc-ion hybrid capacitors with remarkable rate capability[J]. Journal of Energy Chemistry,2021,56:404-411. doi: 10.1016/j.jechem.2020.08.005
    [12]
    Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials,2019,2(9):6490-6496. doi: 10.1021/acsaem.9b01063
    [13]
    Li H, Yang Q, Mo F, et al. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries[J]. Energy Storage Materials,2019,19:94-101. doi: 10.1016/j.ensm.2018.10.005
    [14]
    Mo F, Chen Z, Liang G, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities[J]. Advanced Energy Materials,2020,10(16):2000035. doi: 10.1002/aenm.202000035
    [15]
    Qian L, Yao W, Yao R, et al. Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery[J]. Advanced Functional Materials,2021,31(40):2105736. doi: 10.1002/adfm.202105736
    [16]
    Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-92. doi: 10.1016/S1872-5805(22)60579-1
    [17]
    Wang M, Che X G, Liu S Y, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials,2021,36(1):155-166.
    [18]
    Shang P, Liu M, Mei Y, et al. Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors[J]. Small,2022,18:2108057.
    [19]
    Wang S, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode[J]. Nano-Micro Letters,2019,11(1):1-12. doi: 10.1007/s40820-018-0235-z
    [20]
    Chaudhari N K, Jin H, Kim B, et al. MXene: An emerging two-dimensional material for future energy conversion and storage applications[J]. Journal of Materials Chemistry A,2017,5(47):24564-24579. doi: 10.1039/C7TA09094C
    [21]
    Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. doi: 10.1021/acs.chemmater.7b02847
    [22]
    Sang X, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200. doi: 10.1021/acsnano.6b05240
    [23]
    Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide[J]. Advanced Functional Materials,2016,26(23):4162-4168. doi: 10.1002/adfm.201600357
    [24]
    Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances,2018,4(6):eaat0491. doi: 10.1126/sciadv.aat0491
    [25]
    Kong F, He X, Liu Q, et al. Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries[J]. Ceramics International,2018,44(10):11591-11596. doi: 10.1016/j.ceramint.2018.03.223
    [26]
    Maleski K, Mochalin V N, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [27]
    Firouzjaei M D, Karimiziarani M, Moradkhani H, et al. MXenes: The two-dimensional influencers[J]. Materials Today Advances,2022,13:100202.
    [28]
    Okubo M, Sugahara A, Kajiyama S, et al. MXene as a charge storage host[J]. Accounts of Chemical Research,2018,51(3):591-599. doi: 10.1021/acs.accounts.7b00481
    [29]
    Sun S, Liao C, Hafez A M, et al. Two-dimensional MXenes for energy storage[J]. Chemical Engineering Journal,2018,338:27-45. doi: 10.1016/j.cej.2017.12.155
    [30]
    Kumar P, Singh S, Hashmi S A R, et al. MXenes: Emerging 2D materials for hydrogen storage[J]. Nano Energy,2021,85:105989. doi: 10.1016/j.nanoen.2021.105989
    [31]
    Shinde P A, Patil A M, Lee S, et al. Two-dimensional MXenes for electrochemical energy storage applications[J]. Journal of Materials Chemistry A,2022,10:1105-1149. doi: 10.1039/D1TA04642J
    [32]
    Wang Q, Wang S, Guo X, et al. Mxene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537
    [33]
    Li X, Li M, Yang Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn-ion transportation and superior cycle lifespan[J]. Advanced Energy Materials,2020,10(35):2001394. doi: 10.1002/aenm.202001394
    [34]
    Cui H, Mi H, Ji C, et al. A durable MXene-based zinc-ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte[J]. Journal of Materials Chemistry A,2021,9(42):23941-23954. doi: 10.1039/D1TA06974H
    [35]
    Chen J, Chen H, Chen M, et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors[J]. Chemical Engineering Journal,2022,428:131380. doi: 10.1016/j.cej.2021.131380
    [36]
    Yang Q, Huang Z, Li X, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function[J]. ACS Nano,2019,13(7):8275-8283. doi: 10.1021/acsnano.9b03650
    [37]
    Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano,2019,13(10):11676-11685. doi: 10.1021/acsnano.9b05599
    [38]
    An Y, Tian Y, Liu C, et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries[J]. ACS Nano,2021,15(9):15259-15273. doi: 10.1021/acsnano.1c05934
    [39]
    Li X, Li Q, Hou Y, et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor[J]. ACS Nano,2021,15(9):14631-14642. doi: 10.1021/acsnano.1c04354
    [40]
    Wang H, Ye W, Yang Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [41]
    Yin J, Zhang W, Alhebshi N A, et al. Electrochemical zinc-ion capacitors: Fundamentals, materials, and systems[J]. Advanced Energy Materials,2021,11(21):2100201. doi: 10.1002/aenm.202100201
    [42]
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [43]
    Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environmental Science,2014,7(5):1597-1614. doi: 10.1039/c3ee44164d
    [44]
    Jagadale A D, Rohit R C, Shinde S K, et al. Materials development in hybrid zinc-ion capacitors[J]. ChemNanoMat,2021,7(10):1082-1098. doi: 10.1002/cnma.202100235
    [45]
    Wang L, Peng M, Chen J, et al. High energy and power zinc-ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism[J]. ACS Nano,2022,16(2):2877-2888. doi: 10.1021/acsnano.1c09936
    [46]
    Zhang H, Liu Q, Fang Y, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials,2019,31(44):1904948. doi: 10.1002/adma.201904948
    [47]
    Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    [48]
    Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    [49]
    Deng X, Li J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
    [50]
    Yin J, Zhang W, Wang W, et al. Electrochemical zinc-ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10(37):2001705. doi: 10.1002/aenm.202001705
    [51]
    Zhang W, Jiang H, Li Y, et al. Pizza-like heterostructured Ti3C2Tx/Bi2S3@NC with ultra-high specific capacitance as a potential electrode material for aqueous zinc-ion hybrid supercapacitors[J]. Journal of Alloys and Compounds,2021,883:160881. doi: 10.1016/j.jallcom.2021.160881
    [52]
    Mathis T S, Kurra N, Wang X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007
    [53]
    Balducci A, Belanger D, Brousse T, et al. Perspective-a guideline for reporting performance metrics with electrochemical capacitors: From electrode materials to full devices[J]. Journal of The Electrochemical Society,2017,164(7):A1487. doi: 10.1149/2.0851707jes
    [54]
    Wang C, Zeng X, Cullen P J, et al. The rise of flexible zinc-ion hybrid capacitors: Advances, challenges, and outlooks[J]. Journal of Materials Chemistry A,2021,9:19054-19082. doi: 10.1039/D1TA02775A
    [55]
    Brousse T, Bélanger D, Long J W. To be or not to be pseudocapacitive?[J]. Journal of The Electrochemical Society,2015,162(5):A5185. doi: 10.1149/2.0201505jes
    [56]
    Shao Y, Sun Z, Tian Z, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor[J]. Advanced Functional Materials,2021,31(6):2007843. doi: 10.1002/adfm.202007843
    [57]
    Chen Z, Li X, Wang D, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science,2021,14(6):3492-3501.
    [58]
    Li X, Li N, Huang Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene[J]. ACS Nano,2021,15(1):1718-1726. doi: 10.1021/acsnano.0c09380
    [59]
    Liu F, Jin S, Xia Q, et al. Research progress on construction and energy storage performance of MXene heterostructures[J]. Journal of Energy Chemistry,2021,62:220-242. doi: 10.1016/j.jechem.2021.03.017
    [60]
    Etman A S, Halim J, Rosen J. Mo1.33CTz-Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors[J]. Materials Today Energy,2021,22:100878. doi: 10.1016/j.mtener.2021.100878
    [61]
    Li F, Liu Y, Wang G G, et al. 3D porous H-Ti3C2Tx films as free-standing electrodes for zinc ion hybrid capacitors[J]. Chemical Engineering Journal,2022,435:135052. doi: 10.1016/j.cej.2022.135052
    [62]
    Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15(2):3098-3107. doi: 10.1021/acsnano.0c09646
    [63]
    Shi B, Li L, Chen A, et al. Continuous fabrication of Ti3C2Tx MXene-Based braided coaxial zinc-ion hybrid supercapacitors with improved performance[J]. Nano-Micro Letters,2022,14(1):1-10. doi: 10.1007/s40820-021-00751-y
    [64]
    Peng M, Wang L, Li L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability[J]. Advanced Functional Materials,2022,32:2109524. doi: 10.1002/adfm.202109524
    [65]
    Maughan P A, Tapia-Ruiz N, Bimbo N. In-situ pillared MXene as a viable zinc-ion hybrid capacitor[J]. Electrochimica Acta,2020,341:136061. doi: 10.1016/j.electacta.2020.136061
    [66]
    Jin Y, Ao H, Qi K, et al. A high-rate, long life, and anti-self-discharge aqueous N-doped Ti3C2/Zn hybrid capacitor[J]. Materials Today Energy,2021,19:100598. doi: 10.1016/j.mtener.2020.100598
    [67]
    Li Y, Zhang W, Yang X, et al. A high-voltage and high-capacity Ti3C2Tx/BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion hybrid capacitors[J]. Nano Energy,2021,87:106136. doi: 10.1016/j.nanoen.2021.106136
    [68]
    Wang C, Wei S, Chen S, et al. Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism[J]. Small Methods,2019,3(12):1900495. doi: 10.1002/smtd.201900495
    [69]
    Cao Z, Fu J, Wu M, et al. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density[J]. Energy Storage Materials,2021,40:10-21. doi: 10.1016/j.ensm.2021.04.047
    [70]
    Cheng W, Fu J, Hu H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Science,2021,8(16):2100775. doi: 10.1002/advs.202100775
    [71]
    Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage[J]. Carbon Energy,2021,4(1):60-76.
    [72]
    Li F, Liu Y L, Wang G G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries[J]. Journal of Materials Chemistry A,2021,9(15):9675-9684. doi: 10.1039/D0TA12009J
    [73]
    Zhang Y, Deng S, Pan G, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage[J]. Small Methods,2020,4(6):1900828. doi: 10.1002/smtd.201900828
    [74]
    Zhang Y Z, Wang Y, Jiang Q, et al. MXene printing and patterned coating for device applications[J]. Advanced Materials,2020,32(21):1908486. doi: 10.1002/adma.201908486
    [75]
    Fu K K, Cheng J, Li T, et al. Flexible batteries: From mechanics to devices[J]. ACS Energy Letters,2016,1(5):1065-1079. doi: 10.1021/acsenergylett.6b00401
    [76]
    Wang J, Wang J G, Liu H, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials,2021,31(7):2007397. doi: 10.1002/adfm.202007397
    [77]
    Li X, Ma X, Hou Y, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning[J]. Joule,2021,5(11):2993-3005. doi: 10.1016/j.joule.2021.09.006
    [78]
    Ding B, Ong W J, Jiang J, et al. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M=Ti, Mo)[J]. Applied Surface Science,2020,500:143987. doi: 10.1016/j.apsusc.2019.143987
    [79]
    Liu H, Wang J G, Hua W, et al. Building Ohmic contact interfaces toward ultrastable Zn metal anodes[J]. Advanced Science,2021,8(23):2102612. doi: 10.1002/advs.202102612
    [80]
    Liu H, Wang J G, You Z, et al. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives[J]. Materials Today,2021,42:73-98. doi: 10.1016/j.mattod.2020.08.021
    [81]
    Li Z, Guo D, Wang D, et al. Exploration of metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor[J]. Journal of Power Sources,2021,506:230197. doi: 10.1016/j.jpowsour.2021.230197
    [82]
    Li X, Li M, Luo K, et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes[J]. ACS Nano,2022,16:813-822. doi: 10.1021/acsnano.1c08358
    [83]
    Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials,2022,34:2106897. doi: 10.1002/adma.202106897
    [84]
    Zhang Y, Cao Z, Liu S, et al. Charge‐enriched strategy based on MXene-based polypyrrole layers toward dendrite-free Zinc metal anodes[J]. Advanced Energy Materials,2022,12:2103979. doi: 10.1002/aenm.202103979
    [85]
    Xue Y, Zhang Q, Wang W, et al. Opening two-dimensional materials for energy conversion and storage: A concept[J]. Advanced Energy Materials,2017,7(19):1602684. doi: 10.1002/aenm.201602684
    [86]
    Wu Z, Shang T, Deng Y, et al. The assembly of MXenes from 2D to 3D[J]. Advanced Science,2020,7(7):1903077. doi: 10.1002/advs.201903077
    [87]
    Li K, Liang M, Wang H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials,2020,30(47):2000842. doi: 10.1002/adfm.202000842
    [88]
    Liu Y H, Wang C Y, Yang S L, et al. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry,2022,66:429-439. doi: 10.1016/j.jechem.2021.08.040
    [89]
    Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materials,2021,36(6):1094-1102. doi: 10.1016/S1872-5805(21)60063-X
    [90]
    Xiong D, Shi Y, Yang H Y. Rational design of MXene-based films for energy storage: Progress, prospects[J]. Materials Today,2021,46:183-211. doi: 10.1016/j.mattod.2020.12.004
    [91]
    Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes[J]. Advanced Functional Materials,2020,30(45):2004613. doi: 10.1002/adfm.202004613
    [92]
    Zhan X, Si C, Zhou J, et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications[J]. Nanoscale Horizons,2020,5(2):235-258. doi: 10.1039/C9NH00571D
    [93]
    Zhan C, Naguib M, Lukatskaya M, et al. Understanding the MXene pseudocapacitance[J]. The Journal of Physical Chemistry Letters,2018,9(6):1223-1228. doi: 10.1021/acs.jpclett.8b00200
    [94]
    Wang X, Wang Z, Qiu J. Stabilizing MXene by hydration chemistry in aqueous solution[J]. Angewandte Chemie International Edition,2021,60(51):26587-26591. doi: 10.1002/anie.202113981
    [95]
    Li M, Li X, Qin G, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries[J]. ACS Nano,2021,15(1):1077-1085. doi: 10.1021/acsnano.0c07972
    [96]
    Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
    [97]
    Ren Z, Yu J, Li Y, et al. Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries[J]. Advanced Energy Materials,2018,8(12):1702467. doi: 10.1002/aenm.201702467
    [98]
    Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy,2019,62:550-587. doi: 10.1016/j.nanoen.2019.05.059
    [99]
    Huang H, Jiang R, Feng Y, et al. Recent development and prospects of surface modification and biomedical applications of MXenes[J]. Nanoscale,2020,12(3):1325-1338. doi: 10.1039/C9NR07616F
    [100]
    Riazi H, Anayee M, Hantanasirisakul K, et al. Surface modification of a MXene by an aminosilane coupling agent[J]. Advanced Materials Interfaces,2020,7(6):1902008. doi: 10.1002/admi.201902008
    [101]
    Wang D, Li F, Lian R, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries[J]. ACS Nano,2019,13(10):11078-11086. doi: 10.1021/acsnano.9b03412
    [102]
    Chao H, Qin H, Zhang M, et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets[J]. Advanced Functional Materials,2021,31(16):2007636. doi: 10.1002/adfm.202007636
    [103]
    Chen Q, Cao L, Wang H, et al. Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors[J]. Journal of Power Sources,2022,538:231586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(2007) PDF Downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return