Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LI Hao-jie, LIU Yao-dong. A review of polymer-derived carbon molecular sieve membranes for gas separation. New Carbon Mater., 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9
Citation: LI Hao-jie, LIU Yao-dong. A review of polymer-derived carbon molecular sieve membranes for gas separation. New Carbon Mater., 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9

A review of polymer-derived carbon molecular sieve membranes for gas separation

doi: 10.1016/S1872-5805(22)60613-9
Funds:  The project was supported by National Natural Science Foundation of China (U21A2096, 52173090)
More Information
  • Author Bio:

    李浩杰. E-mail:lhj1241874828@163.com

  • Corresponding author: LIU Yao-dong, Professor. E-mail: liuyd@sxicc.ac.cn
  • Received Date: 2022-03-09
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-04-27
  • Publish Date: 2022-06-01
  • Membrane technology for gas separation and purification has unique economic and environmental advantages over conventional purification processes. Carbon molecular sieve membranes (CMSMs) have a higher gas permeability, selectivity, chemical resistance, and better thermal stability than polymer membranes, and have therefore received more attention. CMSMs are commonly fabricated by the pyrolysis of polymer precursors such as polyimides, resins, cellulose and polyetherimide. The reported fabrication process and gas separation performance of CMSMs made from various precursors are summarized and discussed. Both the chemical and physical structures of the precursor membranes affect the carbon structures and gas separation performances of the resulting CMSMs. Overall, the gas separation performance of CMSMs has been significantly improved in the last 20 years, and their possible commercial use is not far away. An in-depth understanding of this progress on CMSMs should provide researchers from different fields an understanding of how to promote their fabrication and applications.
  • loading
  • [1]
    Pinnau I, Freeman B D. Formation and Modification of Polymeric Membranes: Overview[M]. Membrane Formation and Modification. Washington: American Chemical Society, 1999, 1-22.
    [2]
    Koresh J E, Soffer A. Mechanism of permeation through molecular-sieve carbon membranev[J]. Journal of the Chemical Society, Faraday Transactions,1986,82:2057-2063. doi: 10.1039/f19868202057
    [3]
    Koresh J. Study of molecular sieve carbons: the langmuir modelin ultramicroporous adsorbents[J]. Journal of Colloid and Interface Science,1982,88(2):398-406. doi: 10.1016/0021-9797(82)90268-5
    [4]
    Koresh J, Soffe A. Study of molecular sieve carbons part 1.-pore structure, gradual pore opening and mechanism of molecular sieving[J]. Journal of the Chemical Society, Faraday Transactions,1980,76:2457-2471. doi: 10.1039/f19807602457
    [5]
    Adams J S, Itta A K, Zhang C, et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis[J]. Carbon,2019,141:238-246. doi: 10.1016/j.carbon.2018.09.039
    [6]
    Hamm J B S, Ambrosi A, Griebeler J G, et al. Recent advances in the development of supported carbon membranes for gas separation[J]. International Journal of Hydrogen Energy,2017,42(39):24830-24845. doi: 10.1016/j.ijhydene.2017.08.071
    [7]
    Kiyono M, Williams P J, Koros W J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties[J]. Carbon,2010,48(15):4432-4441. doi: 10.1016/j.carbon.2010.08.002
    [8]
    Rungta M, Xu L, Koros W J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation[J]. Carbon,2012,50(4):1488-1502. doi: 10.1016/j.carbon.2011.11.019
    [9]
    Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes[J]. Journal of Membrane Science,2010,359(1-2):2-10. doi: 10.1016/j.memsci.2009.10.019
    [10]
    Ismail N H, Salleh W N W, Sazali N, et al. Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere[J]. Separation and Purification Technology,2018,195:295-304. doi: 10.1016/j.seppur.2017.12.032
    [11]
    Sazali N, Salleh W N W, Ismail A F, et al. Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment[J]. International Journal of Hydrogen Energy,2019,44(37):20924-20932. doi: 10.1016/j.ijhydene.2018.06.039
    [12]
    Kamath M G, Fu S, Itta A K, et al. 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena[J]. Journal of Membrane Science,2018,546:197-205. doi: 10.1016/j.memsci.2017.10.020
    [13]
    Kamath M G, Itta A K, Hays S S, et al. Pyrolysis end-doping to optimize transport properties of carbon molecular sieve hHollow fiber membranes[J]. Industrial & Engineering Chemistry Research,2020,59(30):13755-13761.
    [14]
    Wan Salleh W N, Ismail A F. Effect of stabilization temperature on gas permeation properties of carbon hollow fiber membrane[J]. Journal of Applied Polymer Science,2013,127(4):2840-2846. doi: 10.1002/app.37621
    [15]
    Suda H, Harayav K. Molecular sieving effect of carbonized kapton polyimide membrane[J]. Journal of the Chemical Society, Chemical Communications,1995:1179-1180.
    [16]
    Jones C w, Koros W j. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors[J]. Carbon,1994,32:1419-1425. doi: 10.1016/0008-6223(94)90135-X
    [17]
    Sulub-Sulub R, Loría-Bastarrachea M I, Vázquez-Torres H, et al. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: Synthesis, characterization and gas transport[J]. Journal of Membrane Science,2018,563:134-141. doi: 10.1016/j.memsci.2018.05.054
    [18]
    Jia M, Zhou M, Li Y, et al. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains[J]. Polymer Chemistry,2018,9(7):920-930. doi: 10.1039/C8PY00004B
    [19]
    Xu Y, Chen C, Li J. Experimental study on physical properties and pervaporation performances of polyimide membranes[J]. Chemical Engineering Science,2007,62(9):2466-2473. doi: 10.1016/j.ces.2007.01.019
    [20]
    Hou M, Qi W, Li L, et al. Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors[J]. Journal of Membrane Science,2021:635.
    [21]
    Liang J, Wang Z, Huang M, et al. Effects on carbon molecular sieve membrane properties for a precursor polyimide with simultaneous flatness and contortion in the repeat unit[J]. ChemSusChem,2020,13(20):5531-5538. doi: 10.1002/cssc.202001572
    [22]
    Qiu W, Li F S, Fu S, et al. Isomer-tailored carbon molecular sieve membranes with high gas separation performance[J]. ChemSusChem,2020,13(19):5318-5328. doi: 10.1002/cssc.202001567
    [23]
    Park H. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. Journal of Membrane Science,2004,229(1-2):117-127. doi: 10.1016/j.memsci.2003.10.023
    [24]
    Wang Z, Ren H, Zhang S, et al. Carbon molecular sieve membranes derived from troger's base-based microporous polyimide for gas separation[J]. ChemSusChem,2018,11(5):916-923. doi: 10.1002/cssc.201702243
    [25]
    Hu C P, Polintan C K, Tayo L L, et al. The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor[J]. Carbon,2019,143:343-351. doi: 10.1016/j.carbon.2018.11.037
    [26]
    Xiao Y, Dai Y, Chung T S, et al. Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes[J]. Macromolecules,2005,38:10042-10049. doi: 10.1021/ma051354j
    [27]
    Fu S, Sanders E S, Kulkarni S S, et al. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors[J]. Journal of Membrane Science,2015,487:60-73. doi: 10.1016/j.memsci.2015.03.079
    [28]
    Qiu W, Zhang K, Li F S, et al. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3: 2) polyimide[J]. ChemSusChem,2014,7(4):1186-1194. doi: 10.1002/cssc.201300851
    [29]
    Qiu W, Xu L, Chen C C, et al. Gas separation performance of 6FDA-based polyimides with different chemical structures[J]. Polymer,2013,54(22):6226-6235. doi: 10.1016/j.polymer.2013.09.007
    [30]
    Wang Q, Huang F, Cornelius C J, et al. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations[J]. Journal of Membrane Science,2021:621.
    [31]
    Karunaweera C, Musselman I H, Balkus K J, et al. Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA[J]. Journal of Membrane Science,2019,581:430-438. doi: 10.1016/j.memsci.2019.03.065
    [32]
    Deng G, Wang Y, Zong X, et al. Structure evolution in carbon molecular sieve membranes derived from binaphthol-6FDA polyimide and their gas separation performance[J]. Journal of Industrial and Engineering Chemistry,2021,94:489-497. doi: 10.1016/j.jiec.2020.11.024
    [33]
    Li W, Goh K, Chuah C Y, et al. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements[J]. Journal of Membrane Science,2019,588:117220. doi: 10.1016/j.memsci.2019.117220
    [34]
    Xiao Y, Chung T S, Chng M L, et al. Structure and properties relationships for aromatic polyimides and their derived carbon membranes: Experimental and simulation approaches[J]. The Journal of Physical Chemistry B,2005,109:18741-18748. doi: 10.1021/jp050177l
    [35]
    Sazali N, Salleh W N W, Ismail A F, et al. Incorporation of thermally labile additives in polyimide carbon membrane for hydrogen separation[J]. International Journal of Hydrogen Energy,2021,46(48):24855-24863. doi: 10.1016/j.ijhydene.2020.10.218
    [36]
    Li H, Xu S, Zhao B, et al. The phase structural evolution and gas separation performances of cellulose acetate/polyimide composite membrane from polymer to carbon stage[J]. Membranes, 2021, 11(8).
    [37]
    Shin J H, Yu H J, Park J, et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. Journal of Membrane Science,2020,598:117660. doi: 10.1016/j.memsci.2019.117660
    [38]
    Jiao W, Ban Y, Shi Z, et al. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices[J]. Chemical Communications,2016,52(95):13779-13782. doi: 10.1039/C6CC07833H
    [39]
    Lo C T, Seifert S, Thiyagarajan P, et al. Effect of polydispersity on the phase behavior of polymer blends[J]. Macromolecular Rapid Communicaitons,2005,26(7):533-536. doi: 10.1002/marc.200400574
    [40]
    H Hatori, T. Kobayashi, Y. Hanzawa Y Y, et al. Mesoporous carbon membranes from polyimide blended with poly(ethylene glycol)[J]. Journal of Applied Polymer Science,2001,79:836-841. doi: 10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1
    [41]
    Shin J H, Yu H J, An H, et al. Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation[J]. Journal of Membrane Science,2019,570-571:504-512. doi: 10.1016/j.memsci.2018.10.076
    [42]
    Fu Y J, Hu C C, Lin D W, et al. Adjustable microstructure carbon molecular sieve membranes derived from thermally stable polyetherimide/polyimide blends for gas separation[J]. Carbon,2017,113:10-17. doi: 10.1016/j.carbon.2016.11.026
    [43]
    Hosseini S S, Omidkhah M R, Zarringhalam Moghaddam A, et al. Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process[J]. Separation and Purification Technology,2014,122:278-289. doi: 10.1016/j.seppur.2013.11.021
    [44]
    Chuah C Y, Lee J, Bao Y, et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science,2021:622.
    [45]
    Wang F, Zhang B, Liu S, et al. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation[J]. Chemical Engineering Research & Design,2019,151:146-156.
    [46]
    Chu Y H, Yancey D, Xu L, et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations[J]. Journal of Membrane Science,2018,548:609-620. doi: 10.1016/j.memsci.2017.11.052
    [47]
    Kim Y. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties[J]. Journal of Membrane Science,2003,226(1-2):145-158. doi: 10.1016/j.memsci.2003.08.017
    [48]
    Katsaros F K, Steriotis T A, Romanos G E, et al. Preparation and characterisation of gas selective microporous carbon membranes[J]. Microporous Mesoporous Materials,2007,99(1-2):181-189. doi: 10.1016/j.micromeso.2006.07.041
    [49]
    Roy S, Das R, Gagrai M K, et al. Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation[J]. Journal of Porous Materials,2016,23(6):1653-1662. doi: 10.1007/s10934-016-0226-8
    [50]
    Centeno T A, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation[J]. Journal of Membrane Science,2004,228(1):45-54. doi: 10.1016/j.memsci.2003.09.010
    [51]
    Fuertes A B, Menendez I. Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes[J]. Separation and Purification Technology,2002,28:29-41. doi: 10.1016/S1383-5866(02)00006-0
    [52]
    Fuertes A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes[J]. Carbon,2001,39:697-706. doi: 10.1016/S0008-6223(00)00168-8
    [53]
    Centeno T A, Fuertes A B. Supported carbon molecular sieve membranes based on a phenolic resin[J]. Journal of Membrane Science,1999,160:201-211. doi: 10.1016/S0376-7388(99)00083-6
    [54]
    Centeno T A, Fuertes A B. Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes[J]. Separation and Purification Technology,2001,25:379-384. doi: 10.1016/S1383-5866(01)00065-X
    [55]
    Jung C H, Kim G W, Han S H, et al. Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions[J]. Macromolecular Research,2007,15(6):565-574. doi: 10.1007/BF03218832
    [56]
    Zhou W, Yoshino M, Kita H, et al. Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin[J]. Journal of Membrane Science,2003,217(1-2):55-67. doi: 10.1016/S0376-7388(03)00074-7
    [57]
    Zhou W, Yoshino M, Kita H, et al. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group[J]. Industrial & Engineering Chemistry Research,2001,40:4801-4807.
    [58]
    Llosa Tanco M A, Pacheco Tanaka D A, Rodrigues S C, et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies[J]. International Journal of Hydrogen Energy,2015,40(16):5653-5663. doi: 10.1016/j.ijhydene.2015.02.112
    [59]
    Teixeira M, Rodrigues S C, Campo M, et al. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies[J]. Chemical Engineering Research & Design,2014,92(11):2668-2680.
    [60]
    Teixeira M, Campo M C, Pacheco Tanaka D A, et al. Composite phenolic resin-based carbon molecular sieve membranes for gas separation[J]. Carbon,2011,49(13):4348-4358. doi: 10.1016/j.carbon.2011.06.012
    [61]
    Teixeira M, Campo M, Tanaka D A, et al. Carbon–Al2O3–Ag composite molecular sieve membranes for gas separation[J]. Chemical Engineering Research & Design,2012,90(12):2338-2345.
    [62]
    Zeng C, Zhang L, Cheng X, et al. Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes[J]. Separation and Purification Technology,2008,63(3):628-633. doi: 10.1016/j.seppur.2008.07.009
    [63]
    Zhou Z H, Yang J H, Chang L F, et al. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation[J]. Chinese Chemical Letters,2007,18(4):455-457. doi: 10.1016/j.cclet.2007.01.039
    [64]
    Lee P S, Kim D, Nam S E, et al. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations[J]. Microporous and Mesoporous Materials,2016,224:332-338. doi: 10.1016/j.micromeso.2015.12.054
    [65]
    Carretero J, Benito J, Guerreroruiz A, et al. Infiltrated glassy carbon membranes in γ-Al2O3 supports[J]. Journal of Membrane Science,2006,281(1-2):500-507. doi: 10.1016/j.memsci.2006.04.020
    [66]
    Liu B S, Guo Y H, Yuan F. Novel modification of a macroporous stainless steel tube by electroless Ni plating for use as a substrate for preparation of nanoporous carbon membranes[J]. Industrial & Engineering Chemistry Research,2012,51(26):9007-9015.
    [67]
    Mariwalat R K, Foley H C. Evolution of ultramicroporous adsorptive structure in poly(furfury1 alcohol) -derived carbogenic molecular sieves[J]. Industrial & Engineering Chemistry Research,1994,33:607-615.
    [68]
    Sedigh M G, Onstot W J, Xu L, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes[J]. The Journal of Physical Chemistry A,1998,102:8580-8589. doi: 10.1021/jp982075j
    [69]
    Acharya M, Raich B A, Foley H C. Metal-supported carbogenic molecular sieve membranes: Synthesis and applications[J]. Industrial & Engineering Chemistry Research,1997,36:2924-2930.
    [70]
    Acharya M, Foley H C. Spray-coating of nanoporous carbon membranes for air separation[J]. Journal of Membrane Science,1999,161:1-5. doi: 10.1016/S0376-7388(99)00173-8
    [71]
    Strano M S, Foley H C. Synthesis and characterization of catalytic nanoporous carbon membranes[J]. AIChE Journal,2001,47(1):66-78. doi: 10.1002/aic.690470110
    [72]
    Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes[J]. Journal of Membrane Science,2000,179:275-282. doi: 10.1016/S0376-7388(00)00513-5
    [73]
    Shiflett M B, Foley H C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes[J]. Science,1999,285:1902-1905. doi: 10.1126/science.285.5435.1902
    [74]
    Wang H, Zhang L, Gavalas G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization[J]. Journal of Membrane Science,2000,177:25-31. doi: 10.1016/S0376-7388(00)00444-0
    [75]
    Hou J, Zhang H, Hu Y, et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes[J]. ACS Applied Materials & Interfaces,2018,10(23):20182-20188.
    [76]
    Song C, Wang T, Jiang H, et al. Gas separation performance of C/CMS membranes derived from poly(furfuryl alcohol) (PFA) with different chemical structure[J]. Journal of Membrane Science,2010,361(1-2):22-27. doi: 10.1016/j.memsci.2010.06.018
    [77]
    Wang C, Ling L, Huang Y, et al. Decoration of porous ceramic substrate with pencil for enhanced gas separation performance of carbon membrane[J]. Carbon,2015,84:151-159. doi: 10.1016/j.carbon.2014.12.003
    [78]
    Yin X, Wang J, Chu N, et al. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties[J]. Journal of Membrane Science,2010,348(1-2):181-189. doi: 10.1016/j.memsci.2009.10.055
    [79]
    Rajagopalan R, Merritt A, Tseytlin A, et al. Modification of macroporous stainless steel supports with silica nanoparticles for size selective carbon membranes with improved flux[J]. Carbon,2006,44(10):2051-2058. doi: 10.1016/j.carbon.2006.01.009
    [80]
    Song C, Wang T, Wang X, et al. Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes[J]. Separation and Purification Technology,2008,58(3):412-418. doi: 10.1016/j.seppur.2007.05.019
    [81]
    Song C, Wang T, Qiu J. Preparation of C/CMS composite membranes derived from Poly(furfuryl alcohol) polymerized by iodine catalyst[J]. Desalination,2009,249(2):486-489. doi: 10.1016/j.desal.2009.04.006
    [82]
    Yin X, Chu N, Yang J, et al. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation[J]. International Journal of Greenhouse Gas Control,2013,15:55-64. doi: 10.1016/j.ijggc.2013.01.032
    [83]
    Anderson C J, Pas S J, Arora G, et al. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes[J]. Journal of Membrane Science,2008,322(1):19-27. doi: 10.1016/j.memsci.2008.04.064
    [84]
    Wang C, Hu X, Yu J, et al. Intermediate gel coating on macroporous Al2O3 substrate for fabrication of thin carbon membranes[J]. Ceramics International,2014,40(7):10367-10373. doi: 10.1016/j.ceramint.2014.03.010
    [85]
    Zhang L, Chen X, Zeng C, et al. Preparation and gas separation of nano-sized nickel particle-filled carbon membranes[J]. Journal of Membrane Science,2006,281(1-2):429-434. doi: 10.1016/j.memsci.2006.04.011
    [86]
    Lie J A, Hägg M B. Carbon membranes from cellulose and metal loaded cellulose[J]. Carbon,2005,43(12):2600-2607. doi: 10.1016/j.carbon.2005.05.018
    [87]
    Lei L, Lindbråthen A, Hillestad M, et al. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process[J]. Journal of Membrane Science,2021,627:119241. doi: 10.1016/j.memsci.2021.119241
    [88]
    Lei L, Lindbråthen A, Zhang X, et al. Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening[J]. Journal of Membrane Science,2020,614:118529. doi: 10.1016/j.memsci.2020.118529
    [89]
    Rodrigues S C, Andrade M, Moffat J, et al. Preparation of carbon molecular sieve membranes from an optimized ionic liquid-regenerated cellulose precursor[J]. Journal of Membrane Science,2019,572:390-400. doi: 10.1016/j.memsci.2018.11.027
    [90]
    Yoda S, Hasegawa A, Suda H, et al. Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation[J]. Chemistry of Materials,2004,16:2363-2368. doi: 10.1021/cm0349250
    [91]
    Barsema J N, Balster J, Jordan V, et al. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters[J]. Journal of Membrane Science,2003,219(1-2):47-57. doi: 10.1016/S0376-7388(03)00176-5
    [92]
    Turner M B, Spear S K, Holbrey J D, et al. Production of bioactive cellulose films reconstituted from ionic liquids[J]. Biomacromolecules,2004,5:1379-1384. doi: 10.1021/bm049748q
    [93]
    Song J, Ge H, Xu M, et al. Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hückel charges[J]. Cellulose,2014,21(6):4019-4027. doi: 10.1007/s10570-014-0461-6
    [94]
    Lei L, Pan F, Lindbrathen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nature Communications,2021,12(1):268. doi: 10.1038/s41467-020-20628-9
    [95]
    Lei L, Lindbråthen A, Hillestad M, et al. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation[J]. Industrial & Engineering Chemistry Research,2019,58(29):13330-13339.
    [96]
    Karousos D S, Lei L, Lindbråthen A, et al. Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2[J]. Separation and Purification Technology,2020,253:117473. doi: 10.1016/j.seppur.2020.117473
    [97]
    Haider S, Lindbråthen A, Lie J A, et al. Carbon membranes for oxygen enriched air – Part I: Synthesis, performance and preventive regeneration[J]. Separation and Purification Technology,2018,204:290-297. doi: 10.1016/j.seppur.2018.05.014
    [98]
    Itta A K, Tseng H H. Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors[J]. International Journal of Hydrogen Energy,2011,36(14):8645-8657. doi: 10.1016/j.ijhydene.2011.03.146
    [99]
    Tseng H H, Shih K, Shiu P T, et al. Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane[J]. Journal of Membrane Science,2012,405-406:250-260. doi: 10.1016/j.memsci.2012.03.014
    [100]
    Tseng H H, Wang C T, Zhuang G L, et al. Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion[J]. Journal of Membrane Science,2016,510:391-404. doi: 10.1016/j.memsci.2016.02.036
    [101]
    Wey M Y, Wang C T, Lin Y T, et al. Interfacial interaction between CMS layer and substrate: Critical factors affecting membrane microstructure and H2 and CO2 separation performance from CH4[J]. Journal of Membrane Science,2019,580:49-61. doi: 10.1016/j.memsci.2019.02.070
    [102]
    Setnickova K, Huang T C, Wang C T, et al. Realizing the impact of the intermediate layer structure on the CO2/CH4 separation performance of carbon molecular sieving membranes: Insights from experimental synthesis and molecular simulation[J]. Separation and Purification Technology,2021,269:118627. doi: 10.1016/j.seppur.2021.118627
    [103]
    Rao P S, Wey M Y, Tseng H H, et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application[J]. Microporous and Mesoporous Materials,2008,113(1-3):499-510.
    [104]
    Salleh W N W, Ismail A F. Carbon hollow fiber membranes derived from PEI/PVP for gas separation[J]. Separation and Purification Technology,2011,80(3):541-548. doi: 10.1016/j.seppur.2011.06.009
    [105]
    Tseng H H, Itta A K. Modification of carbon molecular sieve membrane structure by self-assisted deposition carbon segment for gas separation[J]. Journal of Membrane Science,2012,389:223-233. doi: 10.1016/j.memsci.2011.10.031
    [106]
    Zhang B, Wu Y, Lu Y, et al. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide[J]. Journal of Membrane Science,2015,474:114-121. doi: 10.1016/j.memsci.2014.09.054
    [107]
    Haider S, Lindbråthen A, Lie J A, et al. Regenerated cellulose based carbon membranes for CO2 separation: Durability and aging under miscellaneous environments[J]. Journal of Industrial and Engineering Chemistry,2019,70:363-371. doi: 10.1016/j.jiec.2018.10.037
    [108]
    Sedigh M G, Jahangiri M, Liu P K T, et al. Structural characterization of polyetherimide based carbon molecular sieve membranes[J]. AIChE Journal,2000,46(11):2245-2255. doi: 10.1002/aic.690461116
    [109]
    Sedigh M G, Xu L, Tsotsis T T, et al. Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes[J]. Industrial & Engineering Chemistry Research,1999,38:3367-3380.
    [110]
    Fuertes A B, Centeno T A. Preparation of supported asymmetric carbon molecular sieve membranes[J]. Journal of Membrane Science,1999,144:105-111.
    [111]
    Fuertes A B, Centeno T A. Carbon molecular sieve membranes from polyetherimide[J]. Microporous Mesoporous Mater,1998,26:23-26. doi: 10.1016/S1387-1811(98)00204-2
    [112]
    Wey M Y, Tseng H H, Chiang C K. Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support[J]. Journal of Membrane Science,2014,453:603-613. doi: 10.1016/j.memsci.2013.11.039
    [113]
    Wey M Y, Tseng H H, Chiang C K. Effect of MFI zeolite intermediate layers on gas separation performance of carbon molecular sieve (CMS) membranes[J]. Journal of Membrane Science,2013,446:220-229. doi: 10.1016/j.memsci.2013.06.051
    [114]
    Tseng H H, Shiu P T, Lin Y S. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation[J]. International Journal of Hydrogen Energy,2011,36(23):15352-15363. doi: 10.1016/j.ijhydene.2011.08.060
    [115]
    Itta A K, Tseng H H, Wey M Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation[J]. International Journal of Hydrogen Energy,2010,35(4):1650-1658. doi: 10.1016/j.ijhydene.2009.12.069
    [116]
    Li K, Zhu Z, Dong H, et al. Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers[J]. Journal of Membrane Science,2021,635:119519. doi: 10.1016/j.memsci.2021.119519
    [117]
    Ma Y, Jue M L, Zhang F, et al. Creation of well-defined "mid-sized" micropores in carbon molecular sieve membranes[J]. Angewandte Chemie-International Edition,2019,58(38):13259-13265. doi: 10.1002/anie.201903105
    [118]
    Cosey W K, Balkus K J, Ferraris J P, et al. Reduced aging in carbon molecular sieve membranes derived from PIM-1 and MOP-18[J]. Industrial & Engineering Chemistry Research,2021,60(27):9962-9970.
    [119]
    Hazazi K, Ma X, Wang Y, et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor[J]. Journal of Membrane Science,2019,585:1-9. doi: 10.1016/j.memsci.2019.05.020
    [120]
    Salleh W N W, Ismail A F. Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation[J]. AIChE Journal,2012,58(10):3167-3175. doi: 10.1002/aic.13711
    [121]
    Salleh W N W, Ismail A F. Effects of carbonization heating rate on CO2 separation of derived carbon membranes[J]. Separation and Purification Technology,2012,88:174-183. doi: 10.1016/j.seppur.2011.12.019
    [122]
    Tseng H H, Zhuang G L, Lin M D, et al. The influence of matrix structure and thermal annealing-hydrophobic layer on the performance and durability of carbon molecular sieving membrane during physical aging[J]. Journal of Membrane Science,2015,495:294-304. doi: 10.1016/j.memsci.2015.08.009
    [123]
    Ma X, Swaidan R, Teng B, et al. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor[J]. Carbon,2013,62:88-96. doi: 10.1016/j.carbon.2013.05.057
    [124]
    Swaidan R, Ma X, Litwiller E, et al. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity[J]. Journal of Membrane Science,2013,447:387-394. doi: 10.1016/j.memsci.2013.07.057
    [125]
    Salinas O, Ma X, Wang Y, et al. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity[J]. RSC Advances,2017,7(6):3265-3272. doi: 10.1039/C6RA24699K
    [126]
    Liao K S, Japip S, Lai J Y, et al. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification[J]. Journal of Membrane Science,2017,534:92-99. doi: 10.1016/j.memsci.2017.04.017
    [127]
    Salinas O, Ma X, Litwiller E, et al. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science,2016,504:133-140. doi: 10.1016/j.memsci.2015.12.052
    [128]
    Ogieglo W, Puspasari T, Hota M K, et al. Nanohybrid thin-film composite carbon molecular sieve membranes[J]. Materials Today Nano,2020,9:100065. doi: 10.1016/j.mtnano.2019.100065
    [129]
    Salinas O, Ma X, Litwiller E, et al. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide[J]. Journal of Membrane Science,2016,500:115-123. doi: 10.1016/j.memsci.2015.11.013
    [130]
    Swaidan R J, Ma X, Pinnau I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. Journal of Membrane Science,2016,520:983-989. doi: 10.1016/j.memsci.2016.08.057
    [131]
    Ma Y, Zhang F, Yang S, et al. Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes[J]. Journal of Membrane Science,2018,564:404-414. doi: 10.1016/j.memsci.2018.07.040
    [132]
    Rao M B, Sircar S. Nanoporous carbon membranes for separation of gas mixtures by selective surface flow[J]. Journal of Membrane Science,1993,85(3):253-264. doi: 10.1016/0376-7388(93)85279-6
    [133]
    Thaeron C, Parrillo D J, Sircar S, et al. Separation of hydrogen sulfide–methane mixtures by selective surface flow membrane[J]. Separation and Purification Technology,1999,15:121-129. doi: 10.1016/S1383-5866(98)00089-6
    [134]
    Paranjape M, Clarke P F, Pruden B B, et al. Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane[J]. Adsorption,1998,4:355-360. doi: 10.1023/A:1008802320863
    [135]
    Parrillo D J, Thaeron C, Sircar S. Separation of bulk hydrogen sulfide-hydrogen mixtures by selective surface flow membrane[J]. AIChE Journal,1997,43(9):2239-2245. doi: 10.1002/aic.690430910
    [136]
    Rao M B, Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separationv[J]. Journal of Membrane Science,1996,110:109-118. doi: 10.1016/0376-7388(95)00241-3
    [137]
    Liu J, Goss J, Calverley T, et al. Carbon molecular sieve fiber with 3.4–4.9 Angstrom effective micropores for propylene/propane and other gas separations[J]. Microporous Mesoporous Materials,2020,305:110341. doi: 10.1016/j.micromeso.2020.110341
    [138]
    Liu J, Calverley E M, McAdon M H, et al. New carbon molecular sieves for propylene/propane separation with high working capacity and separation factor[J]. Carbon,2017,123:273-282. doi: 10.1016/j.carbon.2017.07.068
    [139]
    Centeno T A, Fuertes A B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride)[J]. Carbon,2000,38:1067-1073. doi: 10.1016/S0008-6223(99)00214-6
    [140]
    Joseph R M, Merrick M M, Liu R, et al. Synthesis and characterization of polybenzimidazole membranes for gas separation with improved gas permeability: A grafting and blending approach[J]. Journal of Membrane Science,2018,564:587-597. doi: 10.1016/j.memsci.2018.07.064
    [141]
    Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole composite membranes for high temperature synthesis gas separations[J]. Journal of Membrane Science,2012,415-416:265-270. doi: 10.1016/j.memsci.2012.05.005
    [142]
    Zhu L, Swihart M T, Lin H. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation[J]. Energy & Environmental Science,2018,11(1):94-100.
    [143]
    Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation[J]. Journal of Materials Chemistry A,2017,5(37):19914-19923. doi: 10.1039/C7TA03874G
    [144]
    Omidvar M, Nguyen H, Liang H, et al. Unexpectedly strong size-sieving ability in carbonized polybenzimidazole for membrane H2/CO2 separation[J]. ACS Applied Materials & Interfaces,2019,11(50):47365-47372.
    [145]
    Pérez-Francisco J M, Santiago-García J L, Loría-Bastarrachea M I, et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance[J]. Journal of Membrane Science,2020,597:117703. doi: 10.1016/j.memsci.2019.117703
    [146]
    Pirouzfar V, Moghaddam A Z, Omidkhah M R, et al. Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived from blended polyimides through statistical analysis[J]. Journal of Industrial and Engineering Chemistry,2014,20(3):1061-1070. doi: 10.1016/j.jiec.2013.06.043
    [147]
    Hosseini S S, Chung T S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification[J]. Journal of Membrane Science,2009,328(1-2):174-185. doi: 10.1016/j.memsci.2008.12.005
    [148]
    Yang Y, Li H, Chen S, et al. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber[J]. Langmuir,2010,26(17):13897-13902. doi: 10.1021/la101281v
    [149]
    Song C, Wang T, Qiu Y, et al. Effect of carbonization atmosphere on the structure changes of PAN carbon membranes[J]. Journal of Porous Materials,2008,16(2):197-203.
    [150]
    Hamm J B S, Muniz A R, Pollo L D, et al. Experimental and computational analysis of carbon molecular sieve membrane formation upon polyetherimide pyrolysis[J]. Carbon,2017,119:21-29. doi: 10.1016/j.carbon.2017.04.011
    [151]
    Pan Y, He L, Wang W, et al. Zigzag pore based molecular simulation on the separation of CO2/CH4 mixture by carbon membrane[J]. The Canadian Journal of Chemical Engineering,2019,97(3):727-733. doi: 10.1002/cjce.23235
    [152]
    LIB David, AF Ismail. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation[J]. Journal of Membrane Science,2003,213:285-291. doi: 10.1016/S0376-7388(02)00513-6
    [153]
    Kim D, Kwon Y, Lee J H, et al. Tailoring the Stabilization and pyrolysis processes of carbon molecular sieve membrane derived from polyacrylonitrile for ethylene/ethane separation[J]. Membranes (Basel), 2022, 12(1).
    [154]
    Zhang B, Wang T, Zhang S, et al. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone)[J]. Carbon,2006,44(13):2764-2769. doi: 10.1016/j.carbon.2006.03.039
    [155]
    Wang T, Zhang B, Qiu J, et al. Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes[J]. Journal of Membrane Science,2009,330(1-2):319-325. doi: 10.1016/j.memsci.2009.01.006
    [156]
    Liu S, Wang T, Liu Q, et al. Gas permeation properties of carbon molecular sieve membranes derived from novel poly(phthalazinone ether sulfone ketone)[J]. Industrial & Engineering Chemistry Research,2008,47:876-880.
    [157]
    Xu R, He L, Li L, et al. Ultraselective carbon molecular sieve membrane for hydrogen purification[J]. Journal of Energy Chemistry,2020,50:16-24. doi: 10.1016/j.jechem.2020.03.008
    [158]
    Singh R, Koros W J. Carbon molecular sieve membrane performance tuning by dual temperature secondary oxygen doping (DTSOD)[J]. Journal of Membrane Science,2013,427:472-478. doi: 10.1016/j.memsci.2012.10.004
    [159]
    Lagorsse S, Magalhães F D, Mendes A. Aging study of carbon molecular sieve membranes[J]. Journal of Membrane Science,2008,310(1-2):494-502. doi: 10.1016/j.memsci.2007.11.025
    [160]
    Wenz G B, Koros W J. Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach[J]. AIChE Journal,2017,63(2):751-760. doi: 10.1002/aic.15405
    [161]
    Qiu W, Vaughn J, Liu G, et al. Hyperaging tuning of a carbon molecular-sieve hollow fiber membrane with extraordinary gas-separation performance and stability[J]. Angewandte Chemie - International Edition,2019,58(34):11700-11703. doi: 10.1002/anie.201904913
    [162]
    Xu L, Rungta M, Hessler J, et al. Physical aging in carbon molecular sieve membranes[J]. Carbon,2014,80:155-166. doi: 10.1016/j.carbon.2014.08.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article Views(1548) PDF Downloads(211) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return