Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LONG Xiang, ZHU Shao-kuan, SONG Ya, ZHENG Min, SHAO Jiao-jing, SHI Bin. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. New Carbon Mater., 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0
Citation: LONG Xiang, ZHU Shao-kuan, SONG Ya, ZHENG Min, SHAO Jiao-jing, SHI Bin. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. New Carbon Mater., 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0

Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries

doi: 10.1016/S1872-5805(22)60614-0
Funds:  This work was financially supported by National Natural Science Foundation of China (51972070 and 52062004), Key Project of Guizhou Provincial Science and Technology Foundation ([2020]1Z042), Cultivation Project of Guizhou University (GDPY[2019]01), Science and Technology Support Project of Guizhou Province (QKHZC[2021]YB317), and Graduate Innovation Research Fund of Guizhou Province (YJSCXJH[2020]028)
More Information
  • Author Bio:

    龙 翔,硕士生. E-mail:l2972556893@163.com

  • Corresponding author: SHAO Jiao-jing, Ph.D, Professor. E-mail: xjshao@gzu.edu.cn
  • Received Date: 2022-02-10
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-04-27
  • Publish Date: 2022-06-01
  • Lithium-sulfur batteries have attracted extensive attention because of their high theoretical specific energy storage capacity and energy density. However, the shuttling of polysulfides greatly hinders their practical use. Many studies show that engineering the interface between separators and cathodes is an effective strategy to solve this problem. Ways to inhibit the shuttling can be divided into physical blocking, chemical adsorption, and catalysis. Among the interfacial materials, carbon materials have attracted enormous attention due to their high electrical conductivity, large specific area, and high pore volume. However, their non-polarity makes it impossible for them to bind polysulfides tightly and heteroatoms/functional groups are incorporated in them or highly polar materials are composited with them in the design of the interfacial materials. In addition, the catalytic effect of the carbon in the polysulfide conversion is believed to be very important in effectively suppressing the shuttling. This review focuses on the detailed strategies and functions of interfacial engineering in addressing the problems and challenges in the use of lithium sulfur batteries. Finally, practical applications of lithium sulfur batteries are proposed, based on a combination of various measures including interfacial engineering.
  • loading
  • [1]
    Hong X, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. Journal of Energy Chemistry,2020,42:144-168. doi: 10.1016/j.jechem.2019.07.001
    [2]
    Zhou G, Wang D W, Li F, et al. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & environmental science,2012,5(10):8901-8906.
    [3]
    Lin Z, Liang C. Lithium–sulfur batteries: From liquid to solid cells[J]. Journal of Materials Chemistry A,2015,3(3):936-958. doi: 10.1039/C4TA04727C
    [4]
    He Y, Qiao Y, Chang Z, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie,2019,131(34):11900-11904. doi: 10.1002/ange.201906055
    [5]
    Yang Y, Wang W, Li L, et al. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator[J]. Journal of Materials Chemistry A,2020,8(7):3692-3700. doi: 10.1039/C9TA12921A
    [6]
    Marmorstein D, Yu T H, Striebel K A, et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes[J]. Journal of Power Sources,2000,89(2):219-226. doi: 10.1016/S0378-7753(00)00432-8
    [7]
    Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42(7):3018-3032. doi: 10.1039/c2cs35256g
    [8]
    Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials,2015,5(16):1500408. doi: 10.1002/aenm.201500408
    [9]
    Seh Z W, Sun Y, Zhang Q, et al. Designing high-energy lithium–sulfur batteries[J]. Chemical society reviews,2016,45(20):5605-5634. doi: 10.1039/C5CS00410A
    [10]
    Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science,2018,5(1):1700270. doi: 10.1002/advs.201700270
    [11]
    Hencz L, Chen H, Ling H Y, et al. Housing sulfur in polymer composite frameworks for Li-S batteries[J]. Nano-Micro Letters,2019,11(1):17. doi: 10.1007/s40820-019-0249-1
    [12]
    Chen H, Wu Z, Su Z, et al. A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode[J]. Journal of Energy Chemistry,2021,62:127-135. doi: 10.1016/j.jechem.2021.03.015
    [13]
    Jeong Y C, Kim J H, Nam S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials,2018,28(38):1707411. doi: 10.1002/adfm.201707411
    [14]
    Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems and solutions[J]. Journal of Power Sources,2013,231:153-162. doi: 10.1016/j.jpowsour.2012.12.102
    [15]
    Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy,2019,4(1):16-25. doi: 10.1038/s41560-018-0295-9
    [16]
    He Y, Qiao Y, Zhou H. Recent advances in functional modification of separators in lithium–sulfur batteries[J]. Dalton Transactions,2018,47(20):6881-6887. doi: 10.1039/C7DT04717G
    [17]
    Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium–sulfur batteries[J]. Journal of the American Chemical Society,2012,134(45):18510-18513. doi: 10.1021/ja308170k
    [18]
    Sun H, Li Z, Xia S, et al. High-performance lithium-sulfur battery enabled by jointing cobalt decorated interlayer and polyethyleneimine functionalized separator[J]. Journal of Alloys and Compounds,2021,888:161459. doi: 10.1016/j.jallcom.2021.161459
    [19]
    Sun H, Pang Y P, Zheng S Y, et al. Functional design of separator for Li-S batteries[J]. Progress in Chemistry,2020,32(9):1402-1411.
    [20]
    Ruan J, Sun H, Song Y, et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery[J]. Energy Materials,2021,1(2):100018.
    [21]
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [22]
    Seh Z W, Wang H, Liu N, et al. High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance[J]. Chemical Science,2014,5(4):1396-1400. doi: 10.1039/c3sc52789a
    [23]
    Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters,2016,16(1):519-527. doi: 10.1021/acs.nanolett.5b04166
    [24]
    Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270. doi: 10.1021/nl304795g
    [25]
    Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries[J]. Nano Letters,2015,15(6):3780-3786. doi: 10.1021/acs.nanolett.5b00367
    [26]
    Tao X, Wang J, Ying Z, et al. Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters,2014,14(9):5288-5294. doi: 10.1021/nl502331f
    [27]
    Seh Z W, Yu J H, Li W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications,2014,5(1):5017. doi: 10.1038/ncomms6017
    [28]
    Yao S S, He Y P, Arslan M, et al. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries[J]. New Carbon Materials,2021,36(3):606. doi: 10.1016/S1872-5805(21)60032-X
    [29]
    Su Y S, Manthiram A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications,2012,3(1):1166. doi: 10.1038/ncomms2163
    [30]
    Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical communications,2012,48(70):8817-8819. doi: 10.1039/c2cc33945e
    [31]
    Chung S H, Manthiram A. High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters,2014,5(11):1978-1983. doi: 10.1021/jz5006913
    [32]
    Han X, Xu Y, Chen X, et al. Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth[J]. Nano Energy,2013,2(6):1197-1206. doi: 10.1016/j.nanoen.2013.05.003
    [33]
    Shao J J, Zheng D Y, Li Z J, et al. Top-down fabrication of two-dimensional nanomaterials: Controllable liquid phase exfoliation[J]. New Carbon Materials,2016,31(2):97.
    [34]
    Peng H J, Huang J Q, Cheng X B, et al. Lithium-sulfur batteries: Review on high-loading and high-energy lithium–sulfur batteries[J]. Advanced Energy Materials,2017,7(24):1770141. doi: 10.1002/aenm.201770141
    [35]
    Moy D, Manivannan A, Narayanan S R. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells[J]. Journal of The Electrochemical Society,2014,162(1):A1-A7.
    [36]
    Zhang L, Wang Y, Niu Z, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon,2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067
    [37]
    Fang R, Zhao S, Sun Z, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials,2017,29(48):1606823. doi: 10.1002/adma.201606823
    [38]
    Palacín M R, De Guibert A. Why do batteries fail? [J]. Science, 2016, 351(6273):
    [39]
    Woo J J, Zhang Z, Amine K. Separator/electrode assembly based on thermally stable polymer for safe lithium-ion batteries[J]. Advanced Energy Materials,2014,4(5):1301208. doi: 10.1002/aenm.201301208
    [40]
    Yan L, Li Y S, Xiang C B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research[J]. Polymer,2005,46(18):7701-7706. doi: 10.1016/j.polymer.2005.05.155
    [41]
    Qiu L, Zhang S, Zhang L, et al. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries[J]. Electrochimica Acta,2010,55(15):4632-4636. doi: 10.1016/j.electacta.2010.03.030
    [42]
    Jung Y, Kim S. New approaches to improve cycle life characteristics of lithium–sulfur cells[J]. Electrochemistry Communications,2007,9(2):249-254. doi: 10.1016/j.elecom.2006.09.013
    [43]
    Song H, Wu K J, Zhang T W, et al. A nacre-inspired separator coating for impact-tolerant lithium batteries[J]. Advanced Materials,2019,31(51):1905711. doi: 10.1002/adma.201905711
    [44]
    Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium–sulfur batteries[J]. Advanced Energy Materials,2020,10(1):1902872. doi: 10.1002/aenm.201902872
    [45]
    Lee Y, Ryou M H, Seo M, et al. Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries[J]. Electrochimica Acta,2013,113:433-438. doi: 10.1016/j.electacta.2013.09.104
    [46]
    Ryou M H, Lee Y M, Park J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries[J]. Advanced Materials,2011,23(27):3066-3070. doi: 10.1002/adma.201100303
    [47]
    Ryou M H, Lee D J, Lee J N, et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials,2012,2(6):645-650. doi: 10.1002/aenm.201100687
    [48]
    Cao C, Tan L, Liu W, et al. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries[J]. Journal of Power Sources,2014,248:224-229. doi: 10.1016/j.jpowsour.2013.09.027
    [49]
    Peng H J, Wang D W, Huang J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries[J]. Advanced Science,2016,3(1):1500268. doi: 10.1002/advs.201500268
    [50]
    Abbas S A, Ibrahem M A, Hu L H, et al. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries[J]. Journal of Materials Chemistry A,2016,4(24):9661-9669. doi: 10.1039/C6TA02272C
    [51]
    Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries[J]. Advanced Functional Materials,2015,25(33):5285-5291. doi: 10.1002/adfm.201502251
    [52]
    Gu X, Lai C, Liu F, et al. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries[J]. Journal of Materials Chemistry A,2015,3(18):9502-9509. doi: 10.1039/C5TA00681C
    [53]
    Liu Y, Qin X, Zhang S, et al. Fe3O4-decorated porous graphene interlayer for high-Performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26264-26273.
    [54]
    Sun Y N, Sui Z Y, Li X, et al. Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors[J]. ACS Applied Nano Materials,2018,1(2):609-616. doi: 10.1021/acsanm.7b00089
    [55]
    Zhu Q, Zhao Q, An Y, et al. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery[J]. Nano Energy,2017,33:402-409. doi: 10.1016/j.nanoen.2017.01.060
    [56]
    Qian X, Jin L, Zhao D, et al. Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery[J]. Electrochimica Acta,2016,192:346-356. doi: 10.1016/j.electacta.2016.01.225
    [57]
    Sun W, Sun X, Peng Q, et al. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery[J]. Nanoscale Advances,2019,1(4):1589-1597. doi: 10.1039/C8NA00420J
    [58]
    Zheng B, Yu L, Zhao Y, et al. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:910-917. doi: 10.1016/j.electacta.2018.11.145
    [59]
    Wang Z, Huang W, Hua J, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries[J]. Small Methods,2020,4(7):2000082. doi: 10.1002/smtd.202000082
    [60]
    Chen C, Jiang Q, Xu H, et al. Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries[J]. Nano Energy,2020,76:105033. doi: 10.1016/j.nanoen.2020.105033
    [61]
    Chung S H, Manthiram A. A Polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries[J]. Advanced Materials,2014,26(43):7352-7357. doi: 10.1002/adma.201402893
    [62]
    Niu S, Zhou G, Lv W, et al. Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries[J]. Carbon,2016,109:1-6. doi: 10.1016/j.carbon.2016.07.062
    [63]
    Xu Y, Wen Y, Zhu Y, et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries[J]. Advanced Functional Materials,2015,25(27):4312-4320. doi: 10.1002/adfm.201500983
    [64]
    Oh C, Yoon N, Choi J, et al. Enhanced Li–S battery performance based on solution-impregnation-assisted sulfur/mesoporous carbon cathodes and a carbon-coated separator[J]. Journal of Materials Chemistry A,2017,5(12):5750-5760. doi: 10.1039/C7TA01161J
    [65]
    Bao W, Su D, Zhang W, et al. 3D Metal Carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials,2016,26(47):8746-8756. doi: 10.1002/adfm.201603704
    [66]
    Lee J S, Jun J, Jang J, et al. Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium–sulfur batteries[J]. Small,2017,13(12):1602984. doi: 10.1002/smll.201602984
    [67]
    Zhang C, Zhang Z, Wang D, et al. Three-dimensionally ordered macro-/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries[J]. Journal of Alloys and Compounds,2017,714:126-132. doi: 10.1016/j.jallcom.2017.04.194
    [68]
    Wang H, Chen Z, Liu H K, et al. A facile synthesis approach to micro–macroporous carbon from cotton and its application in the lithium–sulfur battery[J]. RSC Advances,2014,4(110):65074-65080. doi: 10.1039/C4RA12260G
    [69]
    Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materlals,2021,36(6):1094. doi: 10.1016/S1872-5805(21)60063-X
    [70]
    Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using threedimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materials,2021,36(6):1094-1101. doi: 10.1016/S1872-5805(21)60063-X
    [71]
    Niu S, Zhang S W, Shi R, et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries[J]. Energy Storage Materials,2020,33:73-81. doi: 10.1016/j.ensm.2020.05.033
    [72]
    Zhou X, Liao Q, Bai T, et al. Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries[J]. Journal of Materials Science,2017,52(13):7719-7732. doi: 10.1007/s10853-017-1029-2
    [73]
    Zhou G, Pei S, Li L, et al. A Graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries[J]. Advanced Materials,2014,26(4):625-631. doi: 10.1002/adma.201302877
    [74]
    Hao J, Pan Y, Chen W, et al. Improving the Li-S battery performance by applying a combined interface engineering approach on the Li2S cathode[J]. Journal of Materials Chemistry A,2019,7(48):27247-27255. doi: 10.1039/C9TA10301E
    [75]
    Deng J, Guo J, Li J, et al. Functional separator with VGCF/PPY coating for high cyclic stability lithium–sulfur battery[J]. Materials Letters,2019,234:35-37. doi: 10.1016/j.matlet.2018.09.059
    [76]
    Li L B, Shan Y H. The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries[J]. New Carbon Materials,2021,36(2):336-349. doi: 10.1016/S1872-5805(21)60023-9
    [77]
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [78]
    Tang X N, Liu C Z, Chen X R, et al. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes[J]. Carbon,2019,146:147-154. doi: 10.1016/j.carbon.2019.01.096
    [79]
    Wu D Y, Zhou W H, He L Y, et al. Micro-corrugated graphene sheet enabled high-performance all-solid-state film supercapacitor[J]. Carbon,2020,160:156-163. doi: 10.1016/j.carbon.2020.01.019
    [80]
    Wu D Y, Shao J J. Graphene-based flexible all-solid-state supercapacitors[J]. Materials Chemistry Frontiers,2021,5(2):557-583. doi: 10.1039/D0QM00291G
    [81]
    Yao S S, He Y P, Arslan M, et al. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries[J]. New Carbon Materials,2021,36(3):606-615. doi: 10.1016/S1872-5805(21)60032-X
    [82]
    Zheng B, Yu L, Li N, et al. Efficiently immobilizing and converting polysulfide by a phosphorus doped carbon microtube textile interlayer for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2020,345:136186. doi: 10.1016/j.electacta.2020.136186
    [83]
    Zhang J, Li H, Pan Y, et al. Advanced-performance lithium-sulfur batteries with functional carbon interlayers modified by magnetron sputtering[J]. Ionics,2019,25(2):513-521. doi: 10.1007/s11581-018-2634-z
    [84]
    Zhu J, Pitcheri R, Kang T, et al. A polysulfide-trapping interlayer constructed by boron and nitrogen co-doped carbon nanofibers for long-life lithium sulfur batteries[J]. Journal of Electroanalytical Chemistry,2019,833:151-159. doi: 10.1016/j.jelechem.2018.11.010
    [85]
    Mo Y X, Lin J X, Wu Y J, et al. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2019,11(4):4065-4073.
    [86]
    Chen L, Yu H, Li W, et al. Interlayer design based on carbon materials for lithium–sulfur batteries: a review[J]. Journal of Materials Chemistry A,2020,8(21):10709-10735. doi: 10.1039/D0TA03028G
    [87]
    Wu K, Hu Y, Shen Z, et al. Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li–S batteries[J]. Journal of Materials Chemistry A,2018,6(6):2693-2699. doi: 10.1039/C7TA09641K
    [88]
    Wutthiprom J, Phattharasupakun N, Khuntilo J, et al. Collaborative design of Li–S batteries using 3D N-doped graphene aerogel as a sulfur host and graphitic carbon nitride paper as an interlayer[J]. Sustainable Energy & Fuels,2017,1(8):1759-1765.
    [89]
    Li Y, Wang W, Liu X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Materials,2019,23:261-268. doi: 10.1016/j.ensm.2019.05.005
    [90]
    Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium–sulfur batteries[J]. Advanced Materials,2017,29(20):1601759. doi: 10.1002/adma.201601759
    [91]
    Sun Z, Zhang J, Yin L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications,2017,8(1):14627. doi: 10.1038/ncomms14627
    [92]
    Shi Q X, Yang C Y, Pei H J, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery[J]. Chemical Engineering Journal,2021,404:127044. doi: 10.1016/j.cej.2020.127044
    [93]
    Kong Z K, Chen Y, Hua J Z, et al. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries[J]. New Carbon Materials,2021,36(4):810-820. doi: 10.1016/S1872-5805(21)60080-X
    [94]
    Li Z, Tang L, Liu X, et al. A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery[J]. Electrochimica Acta,2019,310:1-12. doi: 10.1016/j.electacta.2019.04.057
    [95]
    Wang X, Yang L, Wang Y, et al. Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery[J]. Journal of Colloid and Interface Science,2022,606:666-676. doi: 10.1016/j.jcis.2021.08.062
    [96]
    Song Y, Zhao S, Chen Y, et al. Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li–S batteries[J]. ACS Applied Materials & Interfaces,2019,11(6):5687-5694.
    [97]
    He D, Meng J, Chen X, et al. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium–sulfur batteries[J]. Advanced Functional Materials,2021,31(2):2001201. doi: 10.1002/adfm.202001201
    [98]
    Jin H G, Wang M, Wen J X, et al. Oxygen vacancy-rich mixed-valence cerium MOF: An efficient separator coating to high-performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2021,13(3):3899-3910.
    [99]
    Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials,2015,1:127-145. doi: 10.1016/j.ensm.2015.09.008
    [100]
    Hwang J Y, Kim H M, Shin S, et al. Designing a high-performance lithium–sulfur batteries based onlayered double hydroxides–carbon nanotubes composite Ccathode and a dual-functional graphene–polypropylene–Al2O3 separator[J]. Advanced Functional Materials,2018,28(3):1704294. doi: 10.1002/adfm.201704294
    [101]
    Wang Y, Yang L, Chen Y, et al. Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2020,12(52):57859-57869.
    [102]
    Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources,2018,378:537-545. doi: 10.1016/j.jpowsour.2017.12.067
    [103]
    Guo Y, Zhang Y, Zhang Y, et al. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2018,6(40):19358-19370. doi: 10.1039/C8TA06610H
    [104]
    Kong W, Yan L, Luo Y, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries[J]. Advanced Functional Materials,2017,27(18):1606663. doi: 10.1002/adfm.201606663
    [105]
    He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries[J]. Energy & Environmental Science,2018,11(9):2560-2568.
    [106]
    Fan S, Huang S, Pam M E, et al. Design multifunctional catalytic interface: toward regulation of polysulfide and Li2S redox conversion in Li–S batteries[J]. Small,2019,15(51):1906132. doi: 10.1002/smll.201906132
    [107]
    Rana M, He Q, Luo B, et al. Multifunctional effects of sulfonyl-anchored, dual-doped multilayered graphene for high areal capacity lithium sulfur batteries[J]. ACS Central Science,2019,5(12):1946-1958. doi: 10.1021/acscentsci.9b01005
    [108]
    Balach J, Jaumann T, Klose M, et al. Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent[J]. Journal of Power Sources,2016,303:317-324. doi: 10.1016/j.jpowsour.2015.11.018
    [109]
    Tian Y, Li G, Zhang Y, et al. Low-Bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–Sulfur batteries[J]. Advanced Materials,2020,32(4):1904876. doi: 10.1002/adma.201904876
    [110]
    Jovanović P, Mirshekarloo M S, Hill M R, et al. Separator design variables and recommended characterization methods for viable lithium–sulfur batteries[J]. Advanced Materials Technologies,2021,6(10):2001136. doi: 10.1002/admt.202001136
    [111]
    Geng C, Hua W, Wang D, et al. Demystifying the catalysis in lithium–sulfur batteries: Characterization methods and techniques[J]. SusMat,2021,1(1):51-65. doi: 10.1002/sus2.5
    [112]
    Park J, Yu S H, Sung Y E. Design of structural and functional nanomaterials for lithium-sulfur batteries[J]. Nano Today,2018,18:35-64. doi: 10.1016/j.nantod.2017.12.010
    [113]
    Bhargav A, He J, Gupta A, et al. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule,2020,4(2):285-291. doi: 10.1016/j.joule.2020.01.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(1266) PDF Downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return