Volume 38 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
NIU Jing-yi, JING De-qi, ZHANG Xing-hua, SU Wei-guo, ZHANG Shou-chun. Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries. New Carbon Mater., 2023, 38(1): 143-153. doi: 10.1016/S1872-5805(22)60615-2
Citation: NIU Jing-yi, JING De-qi, ZHANG Xing-hua, SU Wei-guo, ZHANG Shou-chun. Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries. New Carbon Mater., 2023, 38(1): 143-153. doi: 10.1016/S1872-5805(22)60615-2

Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries

doi: 10.1016/S1872-5805(22)60615-2
Funds:  This work was supported by the Key Research and Development Program of Shanxi Province (202003D111002), the National Natural Science Foundation of China (51903249), the Innovation Fund Project of Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-XCL-2022-12) and Major Science and Technology Special Plan of Shanxi Province (202101040201003)
More Information
  • Author Bio:

    牛静宜,硕士生. E-mail:niujingyii@163.com

  • Corresponding author: ZHANG Shou-chun, Professor. E-mail: zschun@sxicc.ac.cn
  • Received Date: 2022-04-06
  • Rev Recd Date: 2022-05-10
  • Available Online: 2022-05-17
  • Publish Date: 2023-01-06
  • Hollow porous carbon fibers for Li-S battery electrodes were prepared by the KOH activation of carbon prepared from hollow polyacrylonitrile fibers. The fibers had a high specific surface area of 2 491 m2·g−1, a large pore volume of 1.22 cm3·g−1 and an initial specific capacity of 330 mAh·g−1 at a current density of 1 C. To improve their electrochemical performance, the fibers were modified by treatment with hydrazine hydrate to prepare nitrogen-doped hollow porous carbon fibers with a specific surface area of 1 690 m2·g−1, a pore volume of 0.84 cm3·g−1 and a high nitrogen content of 8.81 at%. Because of the increased polarity and adsorption capacity produced by the nitrogen doping, the initial specific capacity of the fibers was increased to 420 mAh·g−1 at a current density of 1 C.
  • loading
  • [1]
    Zhong Y, Chao D, Deng S, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high‐performance lithium–sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1706391. doi: 10.1002/adfm.201706391
    [2]
    Kim J S, Hwang T H, Kim B G, et al. A lithium-sulfur battery with a high areal energy density[J]. Advanced Functional Materials,2014,24(34):5359-5367. doi: 10.1002/adfm.201400935
    [3]
    Zhou G, Li L, Ma C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy,2015,11:356-365. doi: 10.1016/j.nanoen.2014.11.025
    [4]
    You Y, Zeng W, Yin Y X, et al. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries[J]. ournal of Materials Chemistry A,2015,3(9):4799-4802. doi: 10.1039/C4TA06142J
    [5]
    Miao L, Wang W, Yuan K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material[J]. Chemical communications,2014,50(87):13231-13234. doi: 10.1039/C4CC03410D
    [6]
    Fang R, Zhao S, Hou P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced materials,2016,28(17):3374-3382. doi: 10.1002/adma.201506014
    [7]
    Chen K, Fang R, Lian Z, et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials,2021,37:224-232. doi: 10.1016/j.ensm.2021.02.012
    [8]
    Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42(7):3018-3032. doi: 10.1039/c2cs35256g
    [9]
    Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy,2016,1(9):1-11.
    [10]
    Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters,2011,11(10):4462-4467. doi: 10.1021/nl2027684
    [11]
    Zhao M, Chen X, Li X Y, et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Advanced Materials,2021,33(13):2007298. doi: 10.1002/adma.202007298
    [12]
    Feng X, Wang Q, Li R, et al. CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries[J]. Applied Surface Science,2019,478:341-346. doi: 10.1016/j.apsusc.2019.01.145
    [13]
    Ye J, He F, Nie J, et al. Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(14):7406-7412. doi: 10.1039/C4TA06976E
    [14]
    Cheng Z, Chen Y, Yang Y, et al. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium–sulfur batteries[J]. Advanced Energy Materials,2021,11(12):2003718. doi: 10.1002/aenm.202003718
    [15]
    Park J H, Choi W Y, Yang J, et al. Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery[J]. Carbon,2021,172:624-636. doi: 10.1016/j.carbon.2020.10.078
    [16]
    Pang Z, Ma Y, Zhou Y, et al. Tailoring 3D carbon foam using CNTs and MnO2 to fabricate stable lithium/dissolved lithium polysulfide batteries[J]. Langmuir,2021,37(13):4016-4024. doi: 10.1021/acs.langmuir.1c00337
    [17]
    Zeng S, Arumugam G M, Liu X, et al. Encapsulation of Sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode[J]. Small,2020,16(39):2001027. doi: 10.1002/smll.202001027
    [18]
    Singhal R, Chung S H, Manthiram A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(8):4530-4538. doi: 10.1039/C4TA06511E
    [19]
    Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced materials,2011,23(47):5641-5644. doi: 10.1002/adma.201103274
    [20]
    Zhang J, Li Z, Lou X W. A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance[J]. Angewandte Chemie International Edition,2017,56(45):14107-14112. doi: 10.1002/anie.201708105
    [21]
    Ryu Z, Zheng J, Wang M, et al. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods[J]. Journal of colloid and interface science,2000,230(2):312-319. doi: 10.1006/jcis.2000.7078
    [22]
    Xiong L, Wang X F, Li L, et al. Nitrogen-enriched porous carbon fiber as a CO2 adsorbent with superior CO2 selectivity by air activation[J]. Energy & Fuels,2019,33(12):12558-12567. doi: 10.1021/acs.energyfuels.9b02769
    [23]
    Li L, Wang X F, Zhong J J, et al. Nitrogen-enriched porous polyacrylonitrile-based carbon fibers for CO2 capture[J]. Industrial & Engineering Chemistry Research,2018,57(34):11608-11616. doi: 10.1021/acs.iecr.8b01836
    [24]
    Li Y, Lu C X, Zhang S C, et al. Nitrogen- and oxygen-enriched 3D hierarchical porous carbon fibers: synthesis and superior supercapacity[J]. Journal of Materials Chemistry A,2015,3(28):14817-14825. doi: 10.1039/C5TA02702K
    [25]
    Zhou C, Li X, Jiang H, et al. Pulverizing Fe2O3 nanoparticles for developing Fe3C/N‐codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li-S batteries[J]. Advanced Functional Materials,2021,31(18):2011249. doi: 10.1002/adfm.202011249
    [26]
    Chen P, Wu Z, Guo T, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials,2021,33(9):2007549. doi: 10.1002/adma.202007549
    [27]
    Yan S, Zhao M, Lei G, et al. Novel tetrazole-functionalized absorbent from polyacrylonitrile fiber for heavy-metal ion adsorption[J]. Journal of Applied Polymer Science,2012,125(1):382-389. doi: 10.1002/app.35641
    [28]
    Pérez-Manríquez L, Aburabi’e J, Neelakanda P, et al. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration[J]. Reactive and Functional Polymers,2015,86:243-247. doi: 10.1016/j.reactfunctpolym.2014.09.015
    [29]
    Chen D, Zhan W, Fu X, et al. High-conductivity 1T-MoS2 catalysts anchored on a carbon fiber cloth for high-performance lithium-sulfur batteries[J]. Materials Chemistry Frontiers,2021,5(18):6941-6950. doi: 10.1039/D1QM00674F
    [30]
    Yang R, Li L, Chen D, et al. The enhancement of polysulfides adsorption for stable lithium-sulfur batteries cathode enabled by N-doped wrinkled graphene using solvothermal method[J]. ChemistrySelect,2017,2(35):11697-11702. doi: 10.1002/slct.201702484
    [31]
    Zhu S, Wang Y, Jiang J, et al. Good low-temperature properties of nitrogen-ienriched porous carbon as sulfur hosts for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces,2016,8(27):17253-17259. doi: 10.1021/acsami.6b04355
    [32]
    Wang Z, Niu X, Xiao J, et al. First principles prediction of nitrogen-doped carbon nanotubes as a high-performance cathode for Li–S batteries[J]. RSC Advances,2013,3(37):16775-16780. doi: 10.1039/c3ra41333k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article Views(564) PDF Downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return