Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi, GUO Chun-li, XU Bing-she, GUO Jun-jie. A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Mater., 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4
Citation: CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi, GUO Chun-li, XU Bing-she, GUO Jun-jie. A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Mater., 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4

A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage

doi: 10.1016/S1872-5805(22)60616-4
Funds:  This work was supported by the National Natural Science Foundation of China (U1810204, U1910210, U21A20174), Natural Science Foundation of Shanxi Province (201901D211046, 20210302123115), Special Foundation for Youth San Jin scholars
More Information
  • Hard carbon is considered the most promising anode material for sodium-ion batteries, but its volume change during sodiation/desodiation limits its cycle life. Hard carbon microspheres (HCSs) with no binder were composited with a MXene film to form an electrode and its sodium storage properties were studied. The microspheres were prepared using Shanxi aged vinegar as a liquid carbon source. Two-dimensional Ti3C2Tx MXene (T is a functional group) was used as a multifunctional conductive binder to fabricate the flexible electrodes. Remarkably, because of the three-dimensional conductive network, the HCS/Ti3C2Tx film electrode has a high capacity of 346 mAh g−1, excellent rate performance and outstanding cycling stability over 1 000 cycles. This remarkable electrochemical performance indicates that the flexible film is a very promising anode for next-generation sodium-ion batteries.
  • loading
  • [1]
    Wu F X, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [2]
    Fan X L, Wang C S. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chemical Society Reviews,2021,50(18):10486-10566. doi: 10.1039/D1CS00450F
    [3]
    Li Y, Zhang J W, Chen Q G, et al. Emerging of heterostructure materials in energy storage: a review[J]. Advanced Materials,2021,33(27):2100855. doi: 10.1002/adma.202100855
    [4]
    Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews,2017,46(12):3529-3614. doi: 10.1039/C6CS00776G
    [5]
    Shan Y Y, Li Y, Pang H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries[J]. Advanced Functional Materials,2020,30(23):2001298. doi: 10.1002/adfm.202001298
    [6]
    Xiao Y, Abbasi N M, Zhu Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials,2020,30(30):2001334. doi: 10.1002/adfm.202001334
    [7]
    Zhang T Y, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041
    [8]
    Pei L Y, Cao H L, Yang L T, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics,2020,26(11):5535-5542. doi: 10.1007/s11581-020-03723-1
    [9]
    Xiang X D, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials,2015,27(36):5343-5364. doi: 10.1002/adma.201501527
    [10]
    Chen S Q, Wu C, Shen L F, et al. Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials,2017,29:1700431. doi: 10.1002/adma.201700431
    [11]
    Jin T, Li H X, Zhu K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews,2020,49(48):2342-2377.
    [12]
    Lao M M, Zhang Y, Luo W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622
    [13]
    Shen L Y, Shi S S, Roy S, et al. Recent advances and optimization strategies on the electrolytes for hard carbon and P-based sodium-ion batteries[J]. Advanced Functional Materials,2021,31(4):2006066. doi: 10.1002/adfm.202006066
    [14]
    David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano,2014,8(2):1759-1770. doi: 10.1021/nn406156b
    [15]
    Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature communications,2013,4:2365. doi: 10.1038/ncomms3365
    [16]
    Li W, Zhou M, Li H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8(10):2916-2921.
    [17]
    Qi S H, Wu D X, Dong Y, et al. Cobalt-based electrode materials for sodium-ion batteries[J]. Chemical Engineering Journal,2019,370:185-207. doi: 10.1016/j.cej.2019.03.166
    [18]
    Li L, Zheng Y, Zhang S L, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy & Environmental Science,2018,11(9):2310-2340.
    [19]
    Dou X W, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Materials Today,2019,23:87-104. doi: 10.1016/j.mattod.2018.12.040
    [20]
    Ponrouch A, Goni A R, Palacin M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications,2013,27:85-88. doi: 10.1016/j.elecom.2012.10.038
    [21]
    Fang Y J, Yu X Y, Lou X W. Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter,2019,1(1):90-114. doi: 10.1016/j.matt.2019.05.007
    [22]
    Xiao B W, Rojo T, Li X L. Hard carbon as sodium-ion battery anodes: progress and challenges[J]. ChemSusChem,2019,12(1):133-144. doi: 10.1002/cssc.201801879
    [23]
    Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-114. doi: 10.1016/S1872-5805(21)60008-2
    [24]
    Pei L Y, Yang L T, Cao H L, et al. Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries[J]. Electrochimica Acta,2020,364:137313. doi: 10.1016/j.electacta.2020.137313
    [25]
    Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid State Letters,2005,8(4):A222-A225. doi: 10.1149/1.1870612
    [26]
    Dahbi M, Kiso M, Kubota K, et al. Synthesis of hard carbon from argan shells for Na-ion batteries[J]. Journal of Materials Chemistry A,2017,5(20):9917-9928. doi: 10.1039/C7TA01394A
    [27]
    Pang J B, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [28]
    Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small 2018, 14(17): 1703419.
    [29]
    Zhang C F, Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials,2019,16:102-125. doi: 10.1016/j.ensm.2018.05.003
    [30]
    Yu L Y, Hu L F, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718
    [31]
    Huang X W, Wu P Y. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors[J]. Advanced Functional Materials,2020,30(12):1910048. doi: 10.1002/adfm.201910048
    [32]
    Sun N, Guan Z R X, Liu Y W, et al. Extended "adsorption-insertion" model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [33]
    Zhang N, Liu Q, Chen W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources,2018,378:331-337. doi: 10.1016/j.jpowsour.2017.12.054
    [34]
    Xia J L, Yan D, Guo L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials,2020,32(21):2000447. doi: 10.1002/adma.202000447
    [35]
    Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials,2019,29(51):1906282. doi: 10.1002/adfm.201906282
    [36]
    Jiang Y L, Zou G Q, Hong W W, et al. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries[J]. Nanoscale,2018,10(39):18786-18794. doi: 10.1039/C8NR05652H
    [37]
    Li H Y, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18(11):7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [38]
    He L, Sun Y R, Wang C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials,2020,35(4):420-427. doi: 10.1016/S1872-5805(20)60499-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(806) PDF Downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return