Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
SUN Ming-hui, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials. New Carbon Mater., 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X
Citation: SUN Ming-hui, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials. New Carbon Mater., 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X

Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials

doi: 10.1016/S1872-5805(22)60622-X
Funds:  The authors acknowledge the financial support from projects funded by National Natural Science Foundation of China (Grant Nos. 22179017, 52172038, U1610105)
More Information
  • Author Bio:

    孙明慧,博士研究生. E-mail:smh_1105@126.com

  • Corresponding author: WANG Xu-zhen, Ph.D., Professor. E-mail: xzwang@dlut.edu.cn
  • Received Date: 2022-04-18
  • Rev Recd Date: 2022-06-11
  • Available Online: 2022-06-17
  • Publish Date: 2022-07-20
  • Carbon materials for the room-temperature selective oxidation of H2S have attracted growing attention in recent years. The recent development of carbon-based desulfurization catalysts is reviewed, including activated carbon modified by alkalis, porous carbon doped with nitrogen or modified with functional groups, and carbon composites with other species such as alkaline metal oxides. The oxidation mechanisms for H2S on the various catalysts are discussed, and the important function of carbon in desulfurization are emphasized, including its large specific area, porous structure and adjustable surface chemistry. In addition to the catalytic oxidation of H2S, the extended use of the spent catalysts, sulfur/carbon composites, as sulfur cathode materials for high-performance lithium-sulfur batteries, is discussed as a way to add extra value to the sulfur-containing pollutants. Finally, the outlook for using carbon-based materials for room-temperature desulfurization and the key challenges to its large-scale use are explored.
  • loading
  • [1]
    Ghosh T K, Tollefson E L. A continuous process for recovery of sulfur from natural-gas containing low concentrations of hydrogen-sulfide[J]. Canadian Journal of Chemical Engineering,1986,64(6):960-968. doi: 10.1002/cjce.5450640612
    [2]
    Seredych M, Bandosz T J. Desulfurization of digester gas on catalytic carbonaceous adsorbents: Complexity of interactions between the surface and components of the gaseous mixture[J]. Industrial & Engineering Chemistry Research,2006,45(10):3658-3665.
    [3]
    Bandosz T J, Le Q. Evaluation of surface properties of exhausted carbons used as H2S adsorbents in sewage treatment plants[J]. Carbon,1998,36(1-2):39-44. doi: 10.1016/S0008-6223(97)00148-6
    [4]
    Turk A, Mahmood K, Mozaffari J. Activated carbon for air purification in New-York-City sewage-treatment plants[J]. Water Science and Technology,1993,27(7-8):121-126. doi: 10.2166/wst.1993.0542
    [5]
    Bandosz T J, Block K A. Removal of hydrogen sulfide on composite sewage sludge-industrial sludge-based adsorbents[J]. Industrial & Engineering Chemistry Research,2006,45(10):3666-3672.
    [6]
    Ni J Q, Heber A J, Diehl C A, et al. Ammonia, hydrogen sulphide and carbon dioxide release from pig manure in under-floor deep pits[J]. Journal of Agricultural Engineering Research,2000,77(1):53-66. doi: 10.1006/jaer.2000.0561
    [7]
    Hendrickson R G, Chang A, Hamilton R J. Co-worker fatalities from hydrogen sulfide[J]. American Journal of Industrial Medicine,2004,45(4):346-350. doi: 10.1002/ajim.10355
    [8]
    Zhang X, Tang Y Y, Qu S Q, et al. H2S-selective catalytic oxidation: catalysts and processes[J]. Acs Catalysis,2015,5(2):1053-1067. doi: 10.1021/cs501476p
    [9]
    Rebolledo-Libreros M E, Trejo A. Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393 K in the range 2.5-1036 kPa[J]. Fluid Phase Equilibr,2004,224(1):83-88. doi: 10.1016/j.fluid.2004.06.049
    [10]
    Sidi-Boumedine R, Horstmann S, Fischer K, et al. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibr,2004,218(1):149-155. doi: 10.1016/j.fluid.2003.11.020
    [11]
    Pieplu A, Saur O, Lavalley J C, et al. Claus catalysis and H2S selective oxidation[J]. Catalysis Reviews-Science and Engineering,1998,40(4):409-450. doi: 10.1080/01614949808007113
    [12]
    Duan H Q, Yan R, Koe L C C, et al. Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration[J]. Chemosphere,2007,66(9):1684-1691. doi: 10.1016/j.chemosphere.2006.07.020
    [13]
    Xiao Y H, Wang S D, Wu D Y, et al. Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon[J]. Separation and Purification Technology,2008,59(3):326-332. doi: 10.1016/j.seppur.2007.07.042
    [14]
    Seredych M, Bandosz T J. Role of microporosity and nitrogen functionality on the surface of activated carbon in the process of desulfurization of digester gas[J]. Journal of Physical Chemistry C,2008,112(12):4704-4711. doi: 10.1021/jp710271w
    [15]
    Keller N, Pham-Huu C, Crouzet C, et al. Direct oxidation of H2S into S. New catalysts and processes based on SiC support[J]. Catalysis Today,1999,53(4):535-542. doi: 10.1016/S0920-5861(99)00141-8
    [16]
    Wu X X, Kercher A K, Schwartz V, et al. Activated carbons for selective catalytic oxidation of hydrogen sulfide to sulfur[J]. Carbon,2005,43(5):1087-1090. doi: 10.1016/j.carbon.2004.11.033
    [17]
    Bandosz T J, Bagreev A, Adib F, et al. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants[J]. Environmental Science & Technology,2000,34(6):1069-1074.
    [18]
    Zou H K, Sheng M P, Sun X F, et al. Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed[J]. Fuel,2017,204:47-53. doi: 10.1016/j.fuel.2017.05.017
    [19]
    Lee E K, Jung K D, Joo O S, et al. Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts[J]. Applied Catalysis a-General,2005,284(1-2):1-4. doi: 10.1016/j.apcata.2004.12.034
    [20]
    Huang G, He E Y, Wang Z D, et al. Synthesis and characterization of gamma-Fe2O3 for H2S removal at low temperature[J]. Industrial & Engineering Chemistry Research,2015,54(34):8469-8478.
    [21]
    Wang J, Wang L J, Fan H L, et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature[J]. Fuel,2017,209:329-338. doi: 10.1016/j.fuel.2017.08.003
    [22]
    Pahalagedara L R, Poyraz A S, Song W Q, et al. Low temperature desulfurization of H2S: High sorption capacities by mesoporous cobalt oxide via increased H2S diffusion[J]. Chemistry of Materials,2014,26(22):6613-6621. doi: 10.1021/cm503405a
    [23]
    Yang C, Kou J W, Fan H L, et al. Facile and versatile sol-gel strategy for the preparation of a high-loaded ZnO/SiO2 adsorbent for room-temperature H2S removal[J]. Langmuir,2019,35(24):7759-7768. doi: 10.1021/acs.langmuir.9b00853
    [24]
    Pan Y K, Xu H, Chen M Q, et al. Unveiling the nature of room-temperature O2 activation and O2·- enrichment on MgO-loaded porous carbons with efficient H2S oxidation[J]. Acs Catalysis,2021,11(10):5974-5983. doi: 10.1021/acscatal.1c00857
    [25]
    Sun M H, Wang X Z, Li Y, et al. Integration of desulfurization and lithium-sulfur batteries enabled by amino-functionalized porous carbon nanofibers [J]. Energy Environmental Materials, 2022,DOI: 10.1002/eem2.12369.
    [26]
    Sun M H, Wang X Z, Pan X, et al. Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide[J]. Fuel Processing Technology,2019,191:121-128. doi: 10.1016/j.fuproc.2019.03.020
    [27]
    Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. Acs Catalysis,2013,3(5):862-870. doi: 10.1021/cs300791j
    [28]
    Chen Q J, Wang J T, Liu X J, et al. Alkaline carbon nanotubes as effective catalysts for H2S oxidation[J]. Carbon,2011,49:3773-3780. doi: 10.1016/j.carbon.2011.05.011
    [29]
    Chiang H L, Tsal J H, Tsal C L, et al. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas[J]. Separation Science and Technology,2000,35(6):903-918.
    [30]
    Wild M, O'Neill L, Zhang T, et al. Lithium sulfur batteries, a mechanistic review[J]. Energy & Environmental Science,2015,8(12):3477-3494.
    [31]
    Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materals,2017,7(24):1700260. doi: 10.1002/aenm.201700260
    [32]
    Pang Q, Liang X, Kwok C Y, et al. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density[J]. Advanced Energy Materals,2017,7(6):1601630. doi: 10.1002/aenm.201601630
    [33]
    Bagreev A, Bandosz T J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents[J]. Industrial & Engineering Chemistry Research,2005,44(3):530-538.
    [34]
    Bandosz T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science,2002,246(1):1-20. doi: 10.1006/jcis.2001.7952
    [35]
    Everett D H, Powl J C. Adsorption in slit-like and cylindrical micropores in Henrys Law region-model for microporosity of carbons[J]. Journal of the Chemical Society-Faraday Transactions I,1976,72:619-636.
    [36]
    Brennan J K, Bandosz T J, Thomson K T, et al. Water in porous carbons[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,187:539-568.
    [37]
    Kante K, Nieto-Delgado C, Rangel-Mendez J R, et al. Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process[J]. Journal of Hazardous Materials,2012,201:141-147.
    [38]
    Zhang Z X, Jiang W Y, Long D H, et al. A General silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature[J]. ACS Applied Materials & Interfaces,2017,9(3):2477-2484.
    [39]
    Yu Z F, Wang X Z, Hou Y N, et al. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization[J]. Carbon,2017,117:376-382. doi: 10.1016/j.carbon.2017.02.100
    [40]
    Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Lett.,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [41]
    Sun C L, Wang H W, Hayashi M, et al. Atomic-scale deformation in N-doped carbon nanotubes[J]. Journal of the American Chemical Society,2006,128(26):8368-8369. doi: 10.1021/ja0587852
    [42]
    Kurak K A, Anderson A B. Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites[J]. Journal of Physical Chemistry C,2009,113(16):6730-6734. doi: 10.1021/jp811518e
    [43]
    Kim D P, Lin C L, Mihalisin T, et al. Electronic-properties of nitrogen-doped graphite flakes[J]. Chemistry of Materials,1991,3(4):686-692. doi: 10.1021/cm00016a023
    [44]
    Maldonado S, Stevenson K J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. Journal of Physical Chemistry B,2005,109(10):4707-4716. doi: 10.1021/jp044442z
    [45]
    Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [46]
    Wang J T, Ke C Y, Jia X F, et al. Polyethyleneimine-functionalized mesoporous carbon nanosheets as metal-free catalysts for the selective oxidation of H2S at room temperature[J]. Applied Catalysis B-Environmental,2021,283:119650. doi: 10.1016/j.apcatb.2020.119650
    [47]
    Pan Y K, Chen M Q, Hu M F, et al. Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel[J]. Applied Catalysis B-Environmental,2020,262:118266. doi: 10.1016/j.apcatb.2019.118266
    [48]
    Pirozzi D, Imparato C, D'Errico G, et al. Three-year lifetime and regeneration of superoxide radicals on the surface of hybrid TiO2 materials exposed to air[J]. Journal of Hazardous Materials,2020,387:121716. doi: 10.1016/j.jhazmat.2019.121716
    [49]
    Hayyan M, Mjalli F S, Hashim M A, et al. Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes[J]. Journal of Electroanalytical Chemistry,2012,664:26-32. doi: 10.1016/j.jelechem.2011.10.008
    [50]
    Vasudevan D, Wendt H. Electroreduction of oxygen in aprotic media[J]. Journal of Electroanalytical Chemistry,1995,392(1-2):69-74. doi: 10.1016/0022-0728(95)04044-O
    [51]
    Gonchar A, Risse T, Freund H J, et al. Activation of oxygen on MgO: O2·- radical ion formation on thin, metal-supported MgO (001) films[J]. Angewandte Chemie-International Edition,2011,50(11):2635-2638. doi: 10.1002/anie.201005729
    [52]
    Wang D, Zhao L X, Ma H Y, et al. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals[J]. Environmental Science & Technology,2017,51(17):10137-10145.
    [53]
    Li L, Sun T H, Shu C H, et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials,2016,311:142-150. doi: 10.1016/j.jhazmat.2016.01.033
    [54]
    Steijns M, Derks F, Verloop A, et al. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur[J]. Applied Catalysis A-General,1976,42(1):87-95.
    [55]
    Steijns M, Mars P. Role of sulfur trapped in micropores in catalytic partial oxidation of hydrogen-sulfide with oxygen[J]. Journal of Catalysis,1974,35(1):11-17. doi: 10.1016/0021-9517(74)90177-8
    [56]
    Chen Q J, Wang Z, Long D H, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S[J]. Industrial & Engineering Chemistry Research,2010,49(7):3152-3159.
    [57]
    Nhut J M, Nguyen P, Pham-Huu C, et al. Carbon nanotubes as nanosized reactor for the selective oxidation of H2S into elemental sulfur[J]. Catalysis Today,2004,91-92:91-97. doi: 10.1016/j.cattod.2004.03.015
    [58]
    Bagreev A, Bandosz T J. A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons[J]. Industrial & Engineering Chemistry Research,2002,41(4):672-679.
    [59]
    Wang M, Yao L W, Wang J T, et al. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture[J]. Applied Energy,2016,168:282-290. doi: 10.1016/j.apenergy.2016.01.085
    [60]
    Li W C, Zhang Z X, Wang J T, et al. Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres[J]. Chemical Engineering Journal,2016,293:243-251. doi: 10.1016/j.cej.2016.02.089
    [61]
    Sun F G, Wang J T, Chen H C, et al. Bottom-up catalytic approach towards nitrogen-enriched mesoporous carbons/sulfur composites for superior Li-S cathodes[J]. Scientific Reports,2013,3:2823. doi: 10.1038/srep02823
    [62]
    Long D H, Chen Q J, Qiao W M, et al. Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation[J]. Chemical Communications,2009 (26):3898-3900.
    [63]
    Zhang Z X, Wang J T, Li W C, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature[J]. Carbon,2016,96:608-615. doi: 10.1016/j.carbon.2015.10.001
    [64]
    Yan R, Chin T, Ng Y L, et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons[J]. Environmental Science & Technology,2004,38(1):316-323.
    [65]
    Chen Q J, Wang J T, Liu X J, et al. Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels[J]. Microporous and Mesoporous Materials,2011,142(2-3):641-648. doi: 10.1016/j.micromeso.2011.01.011
    [66]
    Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry,2012,22(22):11379-11389. doi: 10.1039/c2jm16183d
    [67]
    Yang S B, Feng X L, Wang X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition,2011,50(23):5339-5343. doi: 10.1002/anie.201100170
    [68]
    Shao Y Y, Sui J H, Yin G P, et al. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Applied Catalysis B-Environmental,2008,79(1-2):89-99.
    [69]
    Lai L F, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2012,5(7):7936-7942.
    [70]
    Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon,2000,38(2):227-239. doi: 10.1016/S0008-6223(99)00179-7
    [71]
    Pan Y K, Chen M Q, Su Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization[J]. Applied Catalysis B-Environmental,2021,280:119444. doi: 10.1016/j.apcatb.2020.119444
    [72]
    Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Letters,2009,9(6):2255-2259. doi: 10.1021/nl900397t
    [73]
    Li Y G, Wang H L, Xie L M, et al. MoS2 Nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133(19):7296-7299. doi: 10.1021/ja201269b
    [74]
    Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science,2019,12(7):2080-2147.
    [75]
    Song Y J, Qu K G, Zhao C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22(19):2206-2210. doi: 10.1002/adma.200903783
    [76]
    Su C L, Loh K P. Carbocatalysts: Graphene oxide and its derivatives[J]. Accounts of Chemical Research,2013,46(10):2275-2285. doi: 10.1021/ar300118v
    [77]
    Gao Y J, Tang P, Zhou H, et al. Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction[J]. Angewandte Chemie-International Edition,2016,55(9):3124-3128. doi: 10.1002/anie.201510081
    [78]
    Zhang C, Lv W, Zhang W G, et al. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Advanced Energy Materials,2014,4(7):1301565. doi: 10.1002/aenm.201301565
    [79]
    Yang C, Yang S, Fan H L, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity[J]. Journal of Colloid and Interface Science,2019,555:548-557. doi: 10.1016/j.jcis.2019.08.014
    [80]
    McCluskey M D, Jokela S J. Defects in ZnO[J]. Journal of Applied Physics,2009,106(7):071101. doi: 10.1063/1.3216464
    [81]
    Wang L J, Fan H L, Ju S G, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces,2014,6(23):21167-21177.
    [82]
    Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel,2018,215:695-703. doi: 10.1016/j.fuel.2017.11.037
    [83]
    Chao Y, Wang Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation[J]. Applied Catalysis B-Environmental,2020,266:118674. doi: 10.1016/j.apcatb.2020.118674
    [84]
    Zhang C, Liu D H, Lv W, et al. A high-density graphene-sulfur assembly: A promising cathode for compact Li-S batteries[J]. Nanoscale,2015,7(13):5592-5597. doi: 10.1039/C4NR06863G
    [85]
    Liu D H, Zhang C, Xu Z, et al. H2S + SO2 produces water-dispersed sulfur nanoparticles for lithium-sulfur batteries[J]. Nano Energy,2017,41:665-673. doi: 10.1016/j.nanoen.2017.10.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(1070) PDF Downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return