Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
YING Jia-ping, ZHENG Dong, MENG Shi-bo, YIN Rui-lian, DAI Xiao-jing, FENG Jin-xiu, WU Fang-fang, SHI Wen-hui, CAO Xie-hong. Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries. New Carbon Mater., 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1
Citation: YING Jia-ping, ZHENG Dong, MENG Shi-bo, YIN Rui-lian, DAI Xiao-jing, FENG Jin-xiu, WU Fang-fang, SHI Wen-hui, CAO Xie-hong. Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries. New Carbon Mater., 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1

Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries

doi: 10.1016/S1872-5805(22)60623-1
More Information
  • Author Bio:

    应佳萍、郑冬、孟诗博为共同第一作者

  • Corresponding author: YIN Rui-lian, Lecturer. E-mail: yinrl0501@zjut.edu.cn; CAO Xie-hong, Professor. E-mail: gcscaoxh@zjut.edu.cn
  • Received Date: 2022-04-20
  • Rev Recd Date: 2022-06-15
  • Available Online: 2022-06-20
  • Publish Date: 2022-07-20
  • Zn-air batteries (ZABs) featuring high safety, low-cost, high specific capacity and environmentally friendliness have attracted much attention and emerged as a hot topic in energy storage devices. However, the sluggish kinetics of the oxygen evolution/reduction reactions (OER/ORR) at the air electrode and the non-negligible dendritic growth at the anode have hindered their large scale applications. Carbon materials with low-cost, good electrical conductivity, chemical stability and bifunctional OER/ORR activities have been widely studied for ZABs in the past few years. This review begins with a discussion of the basic working principle of ZABs, followed by an introduction of various carbon materials which focuses on their roles and superior properties in the applications of ZABs. This review also discusses the essential roles of multi-dimensional carbon materials as major components of ZABs, i.e., air electrodes, zinc anodes and separators, in improving the performance of ZABs. Finally, prospects for the future use of carbon materials to improve ZAB performance are explored.
  • loading
  • [1]
    Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials,2017,29(7):1604685. doi: 10.1002/adma.201604685
    [2]
    Li Y, Dai H. Recent advances in zinc-air batteries[J]. Chemical Society Reviews,2014,43(15):5143-5402. doi: 10.1039/C4CS90060J
    [3]
    Zhang T, Bian J, Zhu Y, et al. FeCo nanoparticles encapsulated in N-doped carbon nanotubes coupled with layered double (Co, Fe) hydroxide as an efficient bifunctional catalyst for rechargeable zinc-air batteries[J]. Small,2021,17(44):2103737. doi: 10.1002/smll.202103737
    [4]
    Song Z, Ding J, Liu B, et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier[J]. Advanced Materials,2020,32(22):1908127. doi: 10.1002/adma.201908127
    [5]
    Wang C, Li J, Zhou Z, et al. Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects[J]. EnergyChem,2021,3(4):100055. doi: 10.1016/j.enchem.2021.100055
    [6]
    Cao X, Yin Z, Zhang H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors[J]. Energy & Environmental Science,2014,7(6):1850-1865. doi: 10.1039/c4ee00050a
    [7]
    Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials,2018,31(31):1805230.
    [8]
    Liu T, Mou J, Wu Z, et al. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries[J]. Advanced Functional Materials,2020,30(36):2003407. doi: 10.1002/adfm.202003407
    [9]
    Xia C, Huang L, Yan D, et al. Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc-air batteries[J]. Advanced Functional Materials,2021,31(43):2105021. doi: 10.1002/adfm.202105021
    [10]
    Sun. W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science,2020,371(6524):645-648. doi: 10.1126/science.abb9554
    [11]
    Wu J, Liu B, Fan X, et al. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes[J]. Carbon Energy,2020,2(3):370-386. doi: 10.1002/cey2.60
    [12]
    Wang Z, Zhu C, Tan H, et al. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries[J]. Advanced Functional Materials,2021,31(45):2104735. doi: 10.1002/adfm.202104735
    [13]
    Yu M, Wang Z, Hou C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials,2017,29(15):1602868. doi: 10.1002/adma.201602868
    [14]
    Stock D, Dongmo S, Janek J, et al. Benchmarking anode concepts: the future of electrically rechargeable zinc-air batteries[J]. ACS Energy Letters,2019,4(6):1287-1300. doi: 10.1021/acsenergylett.9b00510
    [15]
    Liang P, Yi J, Liu X, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Advanced Functional Materials,2020,30(13):1908528. doi: 10.1002/adfm.201908528
    [16]
    Li C, Sun Z, Yang T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes[J]. Advanced Materials,2020,32(33):2003425. doi: 10.1002/adma.202003425
    [17]
    Oh Y S, Jung G Y, Kim J H, et al. Janus-faced, dual-conductive/chemically active battery separator membranes[J]. Advanced Functional Materials,2016,26(39):7074-7083. doi: 10.1002/adfm.201602734
    [18]
    Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode[J]. Nano Energy,2021,89:106322. doi: 10.1016/j.nanoen.2021.106322
    [19]
    Liu T, Hong J, Wang J, et al. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan[J]. Energy Storage Materials,2022,45:1074-1083. doi: 10.1016/j.ensm.2021.11.002
    [20]
    Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small,2020,16(29):2001736. doi: 10.1002/smll.202001736
    [21]
    Zhao C X, Liu J N, Wang J, et al. A ΔE=0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc-air batteries[J]. Advanced Materials,2021,33(15):2008606. doi: 10.1002/adma.202008606
    [22]
    Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials,2019,31(31):1805230. doi: 10.1002/adma.201805230
    [23]
    Dong Q, Wang H, Ji S, et al. Mn nanoparticles encapsulated within mesoporous helical N-doped carbon nanotubes as highly active air cathode for zinc-air batteries[J]. Advanced Sustainable Systems,2019,3(12):1900085. doi: 10.1002/adsu.201900085
    [24]
    Weng C, Ren J, Wang H, et al. Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries[J]. Applied Catalysis B: Environmental,2022,307:121190. doi: 10.1016/j.apcatb.2022.121190
    [25]
    Zheng X, Chen Y, Zheng X, et al. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis[J]. Advanced Energy Materials,2019,9(16):1803482. doi: 10.1002/aenm.201803482
    [26]
    Zhu Y H, Yang X Y, Liu T, et al. Flexible 1D batteries: Recent progress and prospects[J]. Advanced Materials,2020,32(5):1901961. doi: 10.1002/adma.201901961
    [27]
    He Y, Zhuang X, Lei C, et al. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications[J]. Nano Today,2019,24:103-119. doi: 10.1016/j.nantod.2018.12.004
    [28]
    Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2019,10(11):1902494. doi: 10.1002/aenm.201902494
    [29]
    Liu W, Yin R, Xu X, et al. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications[J]. Advance Science,2019,6(12):1802373. doi: 10.1002/advs.201802373
    [30]
    Xing X, Liu R, Anjass M, et al. Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts[J]. Applied Catalysis B:Environmental,2020,277:119195. doi: 10.1016/j.apcatb.2020.119195
    [31]
    Guo D H, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351: 361-365.
    [32]
    Chen G, Xu Y, Huang L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry,2021,55:183-189. doi: 10.1016/j.jechem.2020.07.012
    [33]
    Guan C, Sumboja A, Zang W, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials,2019,16:243-250. doi: 10.1016/j.ensm.2018.06.001
    [34]
    Ruan P, Xu X, Gao X, et al. Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks[J]. Sustainable Materials and Technologies,2021,28:e00254. doi: 10.1016/j.susmat.2021.e00254
    [35]
    Fan K, Li Z, Song Y, et al. Confinement synthesis based on layered double hydroxides: A new strategy to construct single-atom-containing integrated electrodes[J]. Advanced Functional Materials,2020,31(10):2008064. doi: 10.1002/adfm.202008064
    [36]
    Liu W, Zheng D, Zhang L, et al. Bioinspired interfacial engineering of a CoSe2 decorated carbon framework cathode towards temperature-tolerant and flexible Zn-air batteries[J]. Nanoscale,2021,13(5):3019-3026. doi: 10.1039/D0NR08365H
    [37]
    Han Y, Duan H, Zhou C, et al. Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries[J]. Nano Letters,2022,22:2497-2505. doi: 10.1021/acs.nanolett.2c00278
    [38]
    Fang J, Zhang X, Wang X, et al. A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries[J]. Journal of Materials Chemistry A,2020,8:15752. doi: 10.1039/D0TA02544E
    [39]
    Povie G, Segawa Y, Nishihara T, et al. Synthesis of a carbon nanobelt[J]. Science,2017,356(6334):172-175. doi: 10.1126/science.aam8158
    [40]
    Cheung K Y, Watanabe K, Segawa Y, et al. Synthesis of a zigzag carbon nanobelt[J]. Nature Chemistry,2021,13(3):255-259. doi: 10.1038/s41557-020-00627-5
    [41]
    Yin Z, Zhu J, He Q, et al. Graphene-based materials for solar cell applications[J]. Advanced energy materials,2014,4(1):1300574. doi: 10.1002/aenm.201300574
    [42]
    Zhang L, Jin L, Liu B, et al. Templated growth of crystalline mesoporous materials: From soft/hard templates to colloidal templates[J]. Frontiers in Chemistry,2019,7:22. doi: 10.3389/fchem.2019.00022
    [43]
    Stucki M, Loepfe M, Stark W J. Porous polymer membranes by hard templating-a review[J]. Advanced Engineering Materials,2018,20(1):1700611. doi: 10.1002/adem.201700611
    [44]
    Zhang H, Zhao M, Liu H, et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries[J]. Nano Letters,2021,21(5):2255-2264. doi: 10.1021/acs.nanolett.1c00077
    [45]
    Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst[J]. Journal of Materials Chemistry A,2017,5(40):21122-21129. doi: 10.1039/C7TA06995B
    [46]
    Han J, Bao H, Wang J Q, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Applied Catalysis B: Environmental,2021,280:119411. doi: 10.1016/j.apcatb.2020.119411
    [47]
    Wang Y, Lu D, Wang F, et al. A new strategy to prepare carbon nanotube thin film by the combination of top-down and bottom-up approaches[J]. Carbon,2020,161:563-569. doi: 10.1016/j.carbon.2020.01.090
    [48]
    Wang Y, Qu M, Xiong S, et al. Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI[J]. Polymer Journal,2020,52(7):783-792. doi: 10.1038/s41428-020-0320-2
    [49]
    Wang Y, Fugetsu B, Wang Z, et al. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors[J]. Scientific Reports,2017,7:40259. doi: 10.1038/srep40259
    [50]
    Zhou Q, Zhang Z, Cai J, et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries[J]. Nano Energy,2020,71:104592. doi: 10.1016/j.nanoen.2020.104592
    [51]
    Liu Y, Chen F, Ye W, et al. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal-air batteries[J]. Advanced Functional Materials,2017,27(12):1-6. doi: 10.1002/adfm.201606034
    [52]
    Jia Z, Li Y, Zuo Z, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of Chemical Research,2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205
    [53]
    Zhang X, Cheng H, Zhang H. Recent progress in the preparation, assembly, transformation, and applications of layer-structured nanodisks beyond graphene[J]. Advanced Materials,2017,29(35):1701704. doi: 10.1002/adma.201701704
    [54]
    Geim A K. Graphene: status and prospects[J]. Science,2009,324(5934):1530-1534. doi: 10.1126/science.1158877
    [55]
    Chang G, Ren J, She X, et al. How heteroatoms (Ge, N, P) improve the electrocatalytic performance of graphene: theory and experiment[J]. Science Bulletin,2018,63(3):155-158. doi: 10.1016/j.scib.2018.01.013
    [56]
    Diao L, Yang T, Chen B, et al. Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc-air batteries[J]. Journal of Materials Chemistry A,2019,7(37):21232-21243. doi: 10.1039/C9TA07652B
    [57]
    Wang C, Liu Y, Li Z, et al. Novel space-confinement synthesis of two-dimensional Fe, N-codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode[J]. Chemical Engineering Journal,2021,411:128492. doi: 10.1016/j.cej.2021.128492
    [58]
    Shi F, Zhu K, Li X, et al. Porous carbon layers wrapped CoFe alloy for ultrastable Zn-air batteries exceeding 20, 000 charging-discharging cycles[J]. Journal of Energy Chemistry,2021,61:327-335. doi: 10.1016/j.jechem.2021.01.032
    [59]
    Zheng D, Liu W, Dai X, et al. Compressible Zn-air batteries based on metal-organic frameworks nanoflake-assembled carbon frameworks for portable motion and temperature monitors[J]. Advanced Energy and Sustainability Research,2022:2200014. doi: 10.1002/aesr.202200014
    [60]
    Zheng G, Xing Z, Gao X, et al. Fabrication of 2D Cu-BDC MOF and its derived porous carbon as anode material for high-performance Li/K-ion batteries[J]. Applied Surface Science,2021,559:149701. doi: 10.1016/j.apsusc.2021.149701
    [61]
    Liu W, Que W, Shen X, et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction[J]. Nanotechnology,2021,33(2):025401. doi: 10.1088/1361-6528/ac2dc6
    [62]
    Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catalysis,2018,8(10):8961-8969. doi: 10.1021/acscatal.8b02556
    [63]
    Zhao X, Shao L, Wang Z, et al. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. Journal of Materials Chemistry C,2021,9(34):11252-11260. doi: 10.1039/D1TC02729H
    [64]
    Zhang Y, Ma S, Li B, et al. Gecko’s feet-inspired self-peeling switchable dry/wet adhesive[J]. Chemistry of Materials,2021,33(8):2785-2795. doi: 10.1021/acs.chemmater.0c04576
    [65]
    Huang X, Zeng Z, Fan Z, et al. Graphene-based electrodes[J]. Advanced Materials,2012,24(45):5979-6004. doi: 10.1002/adma.201201587
    [66]
    Zhang Y, Fugane K, Mori T, et al. Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis[J]. Journal of Materials Chemistry,2012,22:6575-6580. doi: 10.1039/c2jm00044j
    [67]
    Xia B Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method[J]. Advanced Materials,2004,16(17):1553-1558. doi: 10.1002/adma.200400391
    [68]
    Che S, Li C, Wang C, et al. Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization[J]. Chemical Science,2021,12(24):8438-8444. doi: 10.1039/D1SC01902C
    [69]
    Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating[J]. Chemical Society Reviews,2013,42(9):3721-3739. doi: 10.1039/C2CS35308C
    [70]
    Usman K a S, Maina J W, Seyedin S, et al. Downsizing metal-organic frameworks by bottom-up and top-down methods[J]. NPG Asia Materials,2020,12(1):1-18. doi: 10.1038/s41427-019-0187-x
    [71]
    Bruno F, Sciortino A, Buscarino G, et al. A comparative study of top-down and bottom-up carbon nanodots and their interaction with mercury ions[J]. Nanomaterials,2021,11(5):1265. doi: 10.3390/nano11051265
    [72]
    Lin X, Liang Y, Lu Z, et al. Mechanochemistry: A Green, activation-free and top-down strategy to high-surface-area carbon materials[J]. ACS Sustainable Chemistry & Engineering,2017,5(10):8535-8540. doi: 10.1021/acssuschemeng.7b02462
    [73]
    Niu W, Li Z, Marcus K, et al. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries[J]. Advanced Energy Materials,2018,8(1):1701642. doi: 10.1002/aenm.201701642
    [74]
    Hamoudi H, Berdiyorov G R, Ariga K, et al. Bottom-up fabrication of the multi-layer carbon metal nanosheets[J]. RSC Advances,2020,10(13):7987-7993. doi: 10.1039/C9RA08177A
    [75]
    Li H, Zhang M, Zhou W, et al. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery[J]. Chemical Engineering Journal,2021,421:129719. doi: 10.1016/j.cej.2021.129719
    [76]
    Lin Y, Wan H, Wu D, et al. Metal-organic framework hexagonal nanoplates: Bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction[J]. Journal of the American Chemical Society,2020,142(16):7317-7321. doi: 10.1021/jacs.0c01916
    [77]
    Liu W, Yin R, Shi W, et al. Gram-scale preparation of 2D transition metal hydroxide/oxide assembled structures for oxygen evolution and Zn-air battery[J]. ACS Applied Energy Materials,2018,2(1):579-586. doi: 10.1021/acsaem.8b01613
    [78]
    Tang T, Jiang W J, Liu X Z, et al. Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density[J]. Journal of the American Chemical Society,2020,142(15):7116-7127. doi: 10.1021/jacs.0c01349
    [79]
    Deng J, Huang X, Gao W, et al. 3D carbon framework-supported FeSe for high-performance potassium ion batteries[J]. Sustainable Energy & Fuels,2020,4(9):4807-4813. doi: 10.1039/d0se00146e
    [80]
    Zhu P, Gao J, Liu S. A facile controlled synthesis of 3D cobalt nanoparticle-embedded nitrogen-doped carbon materials towards efficient bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Journal of Alloys and Compounds,2021,861:157976. doi: 10.1016/j.jallcom.2020.157976
    [81]
    Yuan G, Liu D, Feng X, et al. 3D carbon networks: Design and applications in sodium ion batteries[J]. ChemPlusChem,2021,86(8):1135-1161. doi: 10.1002/cplu.202100272
    [82]
    Zheng X, Cao X, Zeng K, et al. Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(22):11202-11209. doi: 10.1039/D0TA00014K
    [83]
    Feng J, Wu F, Cao X, et al. Three-dimensional ordered porous carbon for energy conversion and storage applications[J]. Frontiers in Energy Research,2020,8:210. doi: 10.3389/fenrg.2020.00210
    [84]
    Liu W, Zheng D, Deng T, et al. Boosting electrocatalytic activity of 3d-block metal (hydro) oxides by ligand-induced conversion[J]. Angewandte Chemie-International Edition,2021,60(19):10614-10619. doi: 10.1002/anie.202100371
    [85]
    Wang Y, Zou Y, Tao L, et al. Rational design of three-phase interfaces for electrocatalysis[J]. Nano Research,2019,12(9):2055-2066. doi: 10.1007/s12274-019-2310-2
    [86]
    Liu W, Feng J, Yin R, et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media[J]. Chemical Engineering Journal,2022,430:132990. doi: 10.1016/j.cej.2021.132990
    [87]
    Yao W, Chen J, Wang Y, et al. Nitrogen-doped carbon composites with ordered macropores and hollow walls[J]. Angewandte Chemie-International Edition,2021,60(44):23729-23734. doi: 10.1002/anie.202108396
    [88]
    Du J, Zhang Y, Lv H, et al. Re-assembly: Construction of macropores in carbon sheets with high performance in supercapacitor[J]. Advanced Powder Technology,2021,32(4):1294-1299. doi: 10.1016/j.apt.2021.02.030
    [89]
    Cao X, Tan C, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chemical Society Reviews,2017,46(10):2660-2677. doi: 10.1039/C6CS00426A
    [90]
    Wu M, Liu R. Pearl necklace fibrous carbon sharing Fe-N/Fe-P dual active sites as efficient oxygen reduction catalyst in broad media and for liquid/solid-state rechargeable Zn-air battery[J]. Energy Technology,2020,8(3):1901263. doi: 10.1002/ente.201901263
    [91]
    Li Y, Gao J, Zhang F, et al. Hierarchical 3D macrosheets composed of interconnected in situ cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A,2018,6(32):15523-15529. doi: 10.1039/C8TA06057F
    [92]
    Wang W, Tang M, Zheng Z, et al. Alkaline polymer membrane-based ultrathin, flexible, and high-performance solid-state Zn-air battery[J]. Advanced Energy Materials,2019,9(14):1803628. doi: 10.1002/aenm.201803628
    [93]
    Hou C C, Zou L, Xu Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites[J]. Advanced Materials,2019,31(46):1904689. doi: 10.1002/adma.201904689
    [94]
    Wu K, Zhang L, Yuan Y, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries[J]. Advanced Materials,2020,32(32):2002292. doi: 10.1002/adma.202002292
    [95]
    Koblischka M R, Koblischka-Veneva A. Fabrication of superconducting nanowires using the template method[J]. Nanomaterials,2021,11(8):1970. doi: 10.3390/nano11081970
    [96]
    Liu T, Li P, Yao N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting[J]. Advanced Materials,2019,31(21):1806672. doi: 10.1002/adma.201806672
    [97]
    Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science,2013,6(1):41-53.
    [98]
    Chen G, Liu P, Liao Z, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction[J]. Advanced Materials,2020,32(8):1907399. doi: 10.1002/adma.201907399
    [99]
    Xiao M, Xing Z, Jin Z, et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Advanced Materials,2020,32(49):2004900. doi: 10.1002/adma.202004900
    [100]
    Liu S, Han W, Cui B, et al. A novel rechargeable zinc-air battery with molten salt electrolyte[J]. Journal of Power Sources,2017,342:435-441. doi: 10.1016/j.jpowsour.2016.12.080
    [101]
    Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews,2022,452:214297. doi: 10.1016/j.ccr.2021.214297
    [102]
    Cui H, Jiao M, Chen Y-N, et al. Molten-salt-assisted synthesis of 3D holey N-doped graphene as bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Small Methods,2018,2(10):1800144. doi: 10.1002/smtd.201800144
    [103]
    Zhang S, Yang W, Liang Y, et al. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries[J]. Applied Catalysis B: Environmental,2021,285:119780. doi: 10.1016/j.apcatb.2020.119780
    [104]
    Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced materials,2016,28(35):7640-7645. doi: 10.1002/adma.201601019
    [105]
    Cai S, Wang R, Yourey W M, et al. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co-N-C@graphene[J]. Science Bulletin,2019,64(14):968-975. doi: 10.1016/j.scib.2019.05.020
    [106]
    Li Z, Yang J, Ge X, et al. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries[J]. Nano Energy,2021,89:106314. doi: 10.1016/j.nanoen.2021.106314
    [107]
    Sun P X, Cao Z, Zeng Y X, et al. Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes[J]. Angewandte Chemie-International Edition,2021,61:202115649. doi: 10.1002/anie.202115649
    [108]
    E. Davari, D. G. Ivey. Bifunctional electrocatalysts for Zn-air batteries[J]. Sustainable Energy Fuels,2018,2:39-67. doi: 10.1039/C7SE00413C
    [109]
    Yan Y, Zhang Y, Wu Y, et al. A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries[J]. ACS Applied Energy Materials,2018,1(11):6345-6351. doi: 10.1021/acsaem.8b01321
    [110]
    Zhang Y, Wu Y, You W, et al. Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte[J]. Nano Letters,2020,20(6):4700-4707. doi: 10.1021/acs.nanolett.0c01776
    [111]
    Zhou Z, Zhang Y, Chen P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science,2019,194:142-147. doi: 10.1016/j.ces.2018.06.048
    [112]
    Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science,2019,366:645-648. doi: 10.1126/science.aax6873
    [113]
    Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries[J]. Advanced Functional Materials,2020,31(4):2006495. doi: 10.1002/adfm.202006495
    [114]
    Sun W, Ma M, Zhu M, et al. Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery[J]. Small,2022,18(9):2106604. doi: 10.1002/smll.202106604
    [115]
    Luo W, Cheng S, Wu M, et al. A review of advanced separators for rechargeable batteries[J]. Journal of Power Sources,2021,509:230372. doi: 10.1016/j.jpowsour.2021.230372
    [116]
    Huang X, He R, Li M, et al. Functionalized separator for next-generation batteries[J]. Materials Today,2020,41:143-155. doi: 10.1016/j.mattod.2020.07.015
    [117]
    Zhang J, Fu J, Song X, et al. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries[J]. Advanced Energy Materials,2016,6(14):1600476. doi: 10.1002/aenm.201600476
    [118]
    Zarrin H, Sy S, Fu J, et al. Molecular functionalization of graphene oxide for next-generation wearable electronics[J]. ACS Applied Materials & Interfaces,2016,8(38):25428-25437. doi: 10.1021/acsami.6b06769
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article Views(753) PDF Downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return