Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries. New Carbon Mater., 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9
Citation: LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries. New Carbon Mater., 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9

A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries

doi: 10.1016/S1872-5805(22)60627-9
More Information
  • Corresponding author: CHEN Feng-jun. Associate Professor. E-mail: abccfj@126.com; ZHANG Guan-hua. Associate Professor. E-mail: guanhuazhang@hnu.edu.cn
  • Received Date: 2022-06-15
  • Rev Recd Date: 2022-07-15
  • Available Online: 2022-07-19
  • Publish Date: 2022-10-01
  • The rapid development of micro/nanomanufactured integrated microsystems in recent years requires high performance micro energy storage devices (MESDs). Li-ion microbatteries (LIMBs) are the most studied MESDs, but the low mass loading of active materials and the less-than-perfect energy density hinder their further application. A 3D printed ZnSe/N-doped carbon (ZnSe/NC) composite electrode was designed and fabricated by extrusion-based 3D printing and a post-treatment strategy for use as the anode of LIMBs. The high capacity ZnSe nanoparticles are confined in the NC, where the NC not only improves the conductivity but also acts as a buffer layer to reduce the volume expansion and provide additional active sites for electrochemical reactions. The interconnected design of the 3D printed electrode is good for fast mass transfer and ion transport. A freestanding 3D printed ZnSe/NC electrode with a high mass loading of 3.15 mg cm−2 was achieved by direct ink printing, which had a superior energy density and decent reversibility in high-power LIMBs. This strategy can be used for other high-performance electrodes to achieve a high-mass-loading of active materials for microbatteries, opening up a new way to construct advanced MESDs.
  • loading
  • [1]
    Zhang H, Qu Z, Tang H, et al. On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn-air battery with high energy density[J]. ACS Energy Letters,2021,6:2491-2498. doi: 10.1021/acsenergylett.1c00768
    [2]
    Zhu M, Schmidt O G. Tiny robots and sensors need tiny batteries - here's how to do it[J]. Nature,2021,589:195-197. doi: 10.1038/d41586-021-00021-2
    [3]
    Wang J, Wang C, Cai P, et al. Artificial sense technology: Emulating and extending biological senses[J]. ACS Nano,2021,15:18671-18678. doi: 10.1021/acsnano.1c10313
    [4]
    Lv Z, Wang C, Wan C, et al. Strain-driven auto-detachable patterning of flexible electrodes[J]. Advanced Materials,2022:2202877.
    [5]
    Zhang Y, Wang L, Zhao L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films[J]. Advanced Materials,2021,33:2007890. doi: 10.1002/adma.202007890
    [6]
    Lv Z, Li W, Yang L, et al. Custom-made electrochemical energy storage devices[J]. ACS Energy Letters,2019,4:606-614. doi: 10.1021/acsenergylett.8b02408
    [7]
    Zheng S, Shi X, Das P, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries[J]. Advanced Materials,2019,31:1900583. doi: 10.1002/adma.201900583
    [8]
    Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology,2017,12:7-15. doi: 10.1038/nnano.2016.196
    [9]
    Mu X, Du J, Li Y, et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors[J]. Carbon,2019,144:228-234. doi: 10.1016/j.carbon.2018.12.039
    [10]
    Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy Environmental Science,2014,7:867-884. doi: 10.1039/c3ee43526a
    [11]
    Zhang G, Hu J, Nie Y, et al. Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors[J]. Advanced Function Materials,2021,31:2100290. doi: 10.1002/adfm.202100290
    [12]
    Lv X, Zhang Y, Li X, et al. High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor[J]. Journal of Energy Chemistry,2022,72:352-360. doi: 10.1016/j.jechem.2022.03.014
    [13]
    Xu Q, Wu C, Sun X, et al. Flexible electrodes with high areal capacity based on electrospun fiber mats[J]. Nanoscale,2021,13:18391-18409. doi: 10.1039/D1NR05681F
    [14]
    Liu L, Weng Q, Lu X, et al. Advances on microsized on-chip lithium-ion batteries[J]. Small,2017,13:1701847. doi: 10.1002/smll.201701847
    [15]
    Zhang L, Liao M, Bao L, et al. The functionalization of miniature energy-storage devices[J]. Small Methods,2017,1:1700211. doi: 10.1002/smtd.201700211
    [16]
    Chen T, Shuang Z, Hu J, et al. Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries[J]. Small,2022,18:2201628. doi: 10.1002/smll.202201628
    [17]
    Zhao Y, Liu H, Yan Y, et al. Flexible transparent electrochemical energy conversion and storage: From electrode structures to integrated applications [J]. Energy & Environmental Materials, 2021, 10.1002/eem2.12303.
    [18]
    Liu H, Zhang G, Wang L, et al. Engineering 3D architecture electrodes for high-rate aqueous Zn-Mn microbatteries[J]. ACS Applied Energy Materials,2021,4:9,10414-10422.
    [19]
    Liu H, Zhang G, Zheng X, et al. Emerging miniaturized energy storage devices for microsystem applications: From design to integration[J]. International Journal of Extreme Manufacturing,2020,2:042001. doi: 10.1088/2631-7990/abba12
    [20]
    Wang Y, Li Q, Cartmell S, et al. Fundamental understanding and rational design of high energy structural microbatteries[J]. Nano Energy,2018,43:310-316. doi: 10.1016/j.nanoen.2017.11.046
    [21]
    Xia H, Tang Y, Malyi O I, et al. Deep cycling for high-capacity Li-ion batteries[J]. Advanced Materials,2021,33:2004998. doi: 10.1002/adma.202004998
    [22]
    Sun X, Qiao L. Synthesis and electrochemical properties of bioderived silicon particles for lithium ion battery anodes[J]. Journal of Materials Science:Materials in Electronics,2021,32:10277-10288. doi: 10.1007/s10854-021-05683-2
    [23]
    Sun X. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries[J]. Ionics,2020,26:3841-3851. doi: 10.1007/s11581-020-03552-2
    [24]
    Zhong S, Liu H, Wei D, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries[J]. Chemical Engineering Journal,2020,395:125054. doi: 10.1016/j.cej.2020.125054
    [25]
    Xia Q, Yang H, Wang M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Advanced Energy Materials,2017,7:1701336. doi: 10.1002/aenm.201701336
    [26]
    Xue L, Zhang Q, Huang Y, et al. Stabilizing layered structure in aqueous electrolyte via dynamic water intercalation/deintercalation[J]. Advanced Materials,2022,34:2108541. doi: 10.1002/adma.202108541
    [27]
    Zheng S, Huang H, Dong Y, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability[J]. Energy Environmental Science,2020,13:821-829. doi: 10.1039/C9EE03219C
    [28]
    Koo M, Park K I, Lee S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Letters,2012,12:4810-4816. doi: 10.1021/nl302254v
    [29]
    Patnaik S G, Pech D. Low temperature deposition of highly cyclable porous prussian blue cathode for lithium-ion microbattery[J]. Small,2021,17:2101615. doi: 10.1002/smll.202101615
    [30]
    Yue C, Zhang S, Yu Y, et al. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries[J]. Journal of Power Sources,2021,493:229697. doi: 10.1016/j.jpowsour.2021.229697
    [31]
    Zhang G, Zhang X, Liu H, et al. 3D‐printed multi‐channel metal lattices enabling localized electric‐field redistribution for dendrite‐free aqueous Zn ion batteries[J]. Advanced Energy Materials,2021,11:2003927. doi: 10.1002/aenm.202003927
    [32]
    Zhang C, Kremer M P, Seral-Ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Function Materials,2018,28:1705506. doi: 10.1002/adfm.201705506
    [33]
    Shi H, Yue M, Zhang C, et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano,2020,14:8678-8688. doi: 10.1021/acsnano.0c03042
    [34]
    Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15:3098-3107. doi: 10.1021/acsnano.0c09646
    [35]
    Yu Y, Wang Z, Hou Z, et al. 3D Printing of hierarchical graphene lattice for advanced Na metal anodes[J]. ACS Applied Energy Materials,2019,2:3869-3877. doi: 10.1021/acsaem.9b00540
    [36]
    Chao H, Qin H, Zhang M, et al. Boosting the pseudocapacitive and high mass‐loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets[J]. Advanced Function Materials,2021,31:2007636. doi: 10.1002/adfm.202007636
    [37]
    Yang H, Feng Z, Teng X, et al. Three‐dimensional printing of high‐mass loading electrodes for energy storage applications[J]. InfoMat.,2021,3:631-647. doi: 10.1002/inf2.12181
    [38]
    Zhang W, Liu H, Zhang X, et al. 3D printed micro‐electrochemical energy storage devices: From design to integration[J]. Advanced Function Materials,2021,31:2104909. doi: 10.1002/adfm.202104909
    [39]
    Zhang Y, Shi G, Qin J, et al. Recent progress of direct ink writing of electronic components for advanced wearable devices[J]. ACS Applied Electronic Materials,2019,1:1718-1734. doi: 10.1021/acsaelm.9b00428
    [40]
    Zhao J, Zhang Y, Zhao X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities[J]. Advanced Function Materials,2019,29:1900809. doi: 10.1002/adfm.201900809
    [41]
    Liang S, Yu Z, Ma T, et al. Mechanistic insights into the structural modulation of transition metal selenides to boost potassium ion storage Stability[J]. ACS Nano,2021,15:14697-14708. doi: 10.1021/acsnano.1c04493
    [42]
    Hussain I, Sahoo S, Lamiel C, et al. Research progress and future aspects: Metal selenides as effective electrodes[J]. Energy Storage Materials,2022,47:13-43. doi: 10.1016/j.ensm.2022.01.055
    [43]
    Kong F, Zheng J, Chen J, et al. The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating[J]. Journal of Physics and Chemistry of Solids,2021,152:109987. doi: 10.1016/j.jpcs.2021.109987
    [44]
    Zhang T, Qiu D, Hou Y. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries[J]. Nano Energy,2022,94:106909. doi: 10.1016/j.nanoen.2021.106909
    [45]
    Wang L, Liu H, Zhao J, et al. Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors[J]. Chemical Engineering Journal,2020,382:122979. doi: 10.1016/j.cej.2019.122979
    [46]
    Mei H, Zhang H, Bai Y, et al. Enabling the fabrication of advanced NiCo/Bi alkaline battery via MOF-hydrolyzing derived cathode and anode[J]. Materials Today Physics,2021,21:100499. doi: 10.1016/j.mtphys.2021.100499
    [47]
    Dai H, Yuan X, Jiang L, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coordination Chemistry Reviews,2021,441:213985. doi: 10.1016/j.ccr.2021.213985
    [48]
    Saadi M A S R, Maguire A, Pottackal N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022:2108855.
    [49]
    Peng X, Kuang X, Roach D J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing,2021,40:101911. doi: 10.1016/j.addma.2021.101911
    [50]
    Ding J, Shen K, Du Z, et al. 3D-printed hierarchical porous frameworks for sodium storage[J]. ACS Applied Materials Interfaces,2017,9:41871-41877. doi: 10.1021/acsami.7b12892
    [51]
    Zhang T, Ran F. Design Strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Function Materials,2021,31:2010041. doi: 10.1002/adfm.202010041
    [52]
    Zhang S, Chen G, Qu T, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity[J]. Nano Research,2021,14:2776-2782. doi: 10.1007/s12274-021-3284-4
    [53]
    Ruan J, Zang J, Hu J, et al. Respective roles of inner and outer carbon in boosting the K+ storage performance of dual-carbon-confined ZnSe[J]. Advanced Science,2022,9:2104822. doi: 10.1002/advs.202104822
    [54]
    Tang Z, Zhang G, Zhang H, et al. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors[J]. Energy Storage Materials,2018,10:75-84. doi: 10.1016/j.ensm.2017.08.009
    [55]
    Li Y, Wu F, Xiong S. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage[J]. Electrochimica Acta,2019,296:582-589. doi: 10.1016/j.electacta.2018.11.059
    [56]
    Wang B, Tang J, Zhang X, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries[J]. Chemical Engineering Journal,2022,437:135295. doi: 10.1016/j.cej.2022.135295
    [57]
    Jing M, Chen Z, Li Z, et al. Facile synthesis of ZnS/N, S Co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries[J]. ACS Applied Materials Interfaces,2018,10:704-712. doi: 10.1021/acsami.7b15659
    [58]
    He Y, Wang L, Dong C, et al. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries[J]. Energy Storage Materials,2019,23:35-45. doi: 10.1016/j.ensm.2019.05.039
    [59]
    Zhu Z, Li Z, Xiong X, et al. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing[J]. Journal of Alloys and Compounds,2022,906:164316. doi: 10.1016/j.jallcom.2022.164316
    [60]
    Gu Q, Gao L, Guo Y, et al. Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release[J]. Energy Environmental Science,2012,5:7590-7600. doi: 10.1039/c2ee02485c
    [61]
    Zhang W, Sheng J, Zhang J, et al. Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4:16936-16945. doi: 10.1039/C6TA06933A
    [62]
    Zhong S, Zhang H, Fu J, et al. In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries[J]. ChemElectroChem,2018,5:1708-1716. doi: 10.1002/celc.201800287
    [63]
    Song H, Shen L, Wang J, et al. Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4:15411-15419. doi: 10.1039/C6TA05925B
    [64]
    Li G, Shen Q, Wang H, et al. Alternative layered-structure SiCu composite anodes for high-capacity lithium-ion batteries[J]. ACS Applied Energy Materials,2021,5:740-749.
    [65]
    Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT Ffiber microelectrode[J]. ACS Applied Materials Interfaces,2018,10:24573-24582. doi: 10.1021/acsami.8b07756
    [66]
    Xia Q, Zhang Q, Sun S, et al. Tunnel intergrowth Lix MnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries[J]. Advanced Materials,2021,33:2003524. doi: 10.1002/adma.202003524
    [67]
    Wang H, Guo R, Li H, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries[J]. Chemical Engineering. Journal,2022,429:132196. doi: 10.1016/j.cej.2021.132196
    [68]
    Li H, Wei K, Yang Z, et al. V2O5-Au nanocomposite film cathode with enhanced electrochemical performance for lithium-ion micro batteries[J]. Chemical Physics,2021,544:111111. doi: 10.1016/j.chemphys.2021.111111
    [69]
    Wang X, Zheng S, Zhou F, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. National Science Review,2020,7:64-72. doi: 10.1093/nsr/nwz070
    [70]
    Jiang K, Zhou Z, Wen X, et al. Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates[J]. Small,2021,17:8.
    [71]
    Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environmental Science,2014,7:1597-1614. doi: 10.1039/c3ee44164d
    [72]
    Hou B, Wang Y, Liu D, et al. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries[J]. Advanced Function Materials,2018,28:1805444. doi: 10.1002/adfm.201805444
    [73]
    Yang Q, Cui S, Ge Y, et al. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor[J]. Nano Energy,2018,50:623-631. doi: 10.1016/j.nanoen.2018.06.017
    [74]
    Chu T, Park S, Fu K. 3D printing-enabled advanced electrode architecture design[J]. Carbon Energy,2021,3:424-439. doi: 10.1002/cey2.114
  • Supporting information-20220135-Zgh.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(621) PDF Downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return