Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite. New Carbon Mater., 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2
Citation: LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite. New Carbon Mater., 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2

High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite

doi: 10.1016/S1872-5805(22)60629-2
Funds:  This work was supported by National Natural Science Foundation of China (51972154), and Natural Science Foundation of Gansu Province (20JR5RA244).
More Information
  • Author Bio:

    李喜娟,硕士研究生. E-mail:lixijuan20@lzu.edu.cn

  • Corresponding author: ZHANG Zhen-xing, Professor. E-mail: zhangzx@lzu.edu.cn
  • Received Date: 2022-06-14
  • Rev Recd Date: 2022-07-23
  • Available Online: 2022-07-26
  • Publish Date: 2022-10-01
  • Following the fast growth of micro-energy storage devices, there is an urgent need to develop miniaturized electronic devices with excellent performance that are both green and safe. Planar interdigitated rechargeable Zn microbatteries (MBs) have gained widespread attention in recent years due to their ease of series-parallel integration, mechanical flexibility and no need for traditional separators. We prepared a patterned cathode of NiCo layered double hydroxide (LDH)@indium tin oxide (ITO) nanowires (NWs) @carbon cloth (CC) by the chemical vapor deposition of ITO NWs on the carbon fibers in a CC, laser patterning, and finally the electrodeposition of NiCo-LDH to coat the ITO NW@carbon fibers. The cathode was combined with a patterned Zn foil anode to form a planar MB. Because of the highly conductive ITO NWs@CC current collector, the interdigitated MB had a satisfactory performance. The planar MB has a high specific capacity of 453.5 mAh g−1 (corresponding to 0.56 mAh cm−2) in an alkaline water-based electrolyte at 1 mA cm−2. After 4 000 cycles the capacity increased to 216% of the initial value due to gradual penetration of electrolyte into the three-dimensional NiCo-LDH@ITO NW@CC network. It also had excellent energy (798.4 μWh cm−2, corresponding to 649.9 Wh kg−1) and power densities (4.1 mW cm−2, corresponding to 3 282.7 mW kg−1). Furthermore, MBs connected in series-parallel in lighting tests illustrate the excellent performance of the device. Therefore, these fast and simple Zn MBs with an in-plane interdigital structure provide a reference for next-generation high-performance, environmentally-friendly, and scalable planar micro-energy storage systems.
  • loading
  • [1]
    Y Chen, M Guo, L Xu, et al. In-situ selective surface engineering of graphene micro-supercapacitor chips[J]. Nano Res,2021,15(2):1492-1499. doi: 10.1007/s12274-021-3693-4
    [2]
    L Chi, S Zheng, J Ma, et al. 1.6 V high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets[J]. Carbon,2022,194:240-247. doi: 10.1016/j.carbon.2022.03.057
    [3]
    Y Zhang, S Zheng, F Zhou, et al. Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics[J]. Small,2022,18(5):e2104506-e2104513. doi: 10.1002/smll.202104506
    [4]
    C Meng, F Zhou, H Liu, et al. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors[J]. ACS Energy Lett,2022,7(5):1706-1711. doi: 10.1021/acsenergylett.2c00329
    [5]
    W Lai, Y Wang, Z Lei, et al. High performance, environmentally benign and integratable Zn//MnO2microbatteries[J]. J Mater Chem A,2018,6(9):3933-3940. doi: 10.1039/C7TA10936A
    [6]
    A Toor, A Wen, F Maksimovic, et al. Stencil-printed lithium-ion micro batteries for IoT applications[J]. Nano Energy,2021,82:105666-105673. doi: 10.1016/j.nanoen.2020.105666
    [7]
    S Y Lee. Scalable and safer printed Zn//MnO2 planar micro-batteries for smart electronics[J]. Natl Sci Rev,2020,7(1):5-6. doi: 10.1093/nsr/nwz092
    [8]
    K A Qu, W Chen, J Guo, et al. A mini-review on preparation of functional composite fibers and their based devices[J]. Coatings,2022,12(4):473-484. doi: 10.3390/coatings12040473
    [9]
    S Zheng, X Shi, P Das, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries[J]. Adv Mater,2019,31(50):e1900583-e1900606. doi: 10.1002/adma.201900583
    [10]
    Y Ren, F Meng, S Zhang, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro‐zinc‐ion battery[J]. Carbon Energy,2022,4(3):446-457. doi: 10.1002/cey2.177
    [11]
    J F M Oudenhoven, R J M Vullers, R Schaijk. A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems[J]. Int J Energy Res,2012,36(12):1139-1150. doi: 10.1002/er.2949
    [12]
    J Koo, S B Kim, Y S Choi, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion[J]. Sci Adv,2020,6(35):eabb1093. doi: 10.1126/sciadv.abb1093
    [13]
    C Zhang, Z Peng, C Huang, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems[J]. Nano Energy,2021,81:105609-105622. doi: 10.1016/j.nanoen.2020.105609
    [14]
    E Sardini, M Serpelloni. Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability[J]. IEEE Trans Instrum Meas,2011,60(5):1838-1844. doi: 10.1109/TIM.2010.2089090
    [15]
    Z L Wang, W Wu. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems[J]. Angew Chem Int Ed,2012,51(47):11700-21. doi: 10.1002/anie.201201656
    [16]
    S Zheng, J Ma, K Fang, et al. High‐voltage potassium ion micro‐supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system[J]. Adv Energy Mater,2021,11(17):2003835-2003843. doi: 10.1002/aenm.202003835
    [17]
    K Sun, T S Wei, B Y Ahn, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater,2013,25(33):4539-43. doi: 10.1002/adma.201301036
    [18]
    X Gao, H Zhou, S Li, et al. The fast-charging properties of micro lithium-ion batteries for smart devices[J]. J Colloid Interface Sci,2022,615:141-150. doi: 10.1016/j.jcis.2022.01.105
    [19]
    Z Tian, Z Sun, Y Shao, et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency[J]. Energy Environ Sci,2021,14(3):1602-1611. doi: 10.1039/D0EE03623D
    [20]
    H Wang, R Guo, H Li, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries[J]. Chem Eng J,2022,429:132196-132203. doi: 10.1016/j.cej.2021.132196
    [21]
    Z Hao, L Xu, Q Liu, et al. On‐chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics[J]. Adv Funct Mater,2019,29(16):1808470-1808478. doi: 10.1002/adfm.201808470
    [22]
    X Wang, S Zheng, F Zhou, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. Natl Sci Rev,2020,7(1):64-72. doi: 10.1093/nsr/nwz070
    [23]
    R Li, L Li, R Jia, et al. A flexible concentric circle structured zinc‐ion micro‐battery with electrodeposited electrodes[J]. Small Methods,2020,4(9):2000363-2000371. doi: 10.1002/smtd.202000363
    [24]
    M Yan, P He, Y Chen, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Adv Mater,2018,30(1):1703725-1703730. doi: 10.1002/adma.201703725
    [25]
    B Yin, S Zhang, K Ke, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery[J]. Nanoscale,2019,11(42):19723-19728. doi: 10.1039/C9NR07458A
    [26]
    C Liu, X Wang, F Xie, et al. Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties[J]. J Mater Sci: Mater Electron,2016,27(9):9870-9876. doi: 10.1007/s10854-016-5055-7
    [27]
    X Han, J Li, J Lu, et al. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy,2021,86:106079-106088. doi: 10.1016/j.nanoen.2021.106079
    [28]
    X Wang, J Hu, W Liu, et al. Ni–Zn binary system hydroxide, oxide and sulfide materials: Synthesis and high supercapacitor performance[J]. J Mater Chem A,2015,3(46):23333-23344. doi: 10.1039/C5TA07169K
    [29]
    R Ramachandran, Y Lan, Z X Xu, et al. Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors[J]. ACS Appl Energy Mater,2020,3(7):6633-6643. doi: 10.1021/acsaem.0c00790
    [30]
    X Gao, Z Jia, B Wang, et al. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber[J]. Chem Eng J,2021,419:130019-130030. doi: 10.1016/j.cej.2021.130019
    [31]
    H Chen, Z Shen, Z Pan, et al. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries[J]. Adv Sci (Weinh),2019,6(8):1802002-1802011. doi: 10.1002/advs.201802002
    [32]
    C Cao, X Xiang, H Zhu. High-density, uniform gallium nitride nanorods grown on Au-coated silicon substrate[J]. J Cryst Growth,2005,273(3-4):375-380. doi: 10.1016/j.jcrysgro.2004.09.050
    [33]
    M C Johnson, S Aloni, D E McCready, et al. Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport[J]. Cryst Growth Des,2006,6(8):1936-1941. doi: 10.1021/cg050524g
    [34]
    O Yaglioglu, A Cao, A J Hart, et al. Wide range control of microstructure and mechanical properties of carbon nanotube forests: A comparison between fixed and floating catalyst CVD techniques[J]. Adv Funct Mater,2012,22(23):5028-5037. doi: 10.1002/adfm.201200852
    [35]
    V Augustyn, J Come, M A Lowe, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater,2013,12(6):518-22. doi: 10.1038/nmat3601
    [36]
    H S Kim, J B Cook, H Lin, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nat Mater,2017,16(4):454-460. doi: 10.1038/nmat4810
    [37]
    M Li, W Liu, K Jiang, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-Ion hybrid micro supercapacitor array with enhanced stability[J]. Nanomicro Lett,2021,13(1):100-110. doi: 10.1007/s40820-021-00634-2
    [38]
    P Zhang, Y Li, G Wang, et al. Zn-Ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Adv Mater,2019,31(3):e1806005-e1806010. doi: 10.1002/adma.201806005
  • supporting information20220133-Zzx.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(913) PDF Downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return