Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. New Carbon Mater., 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9
Citation: XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. New Carbon Mater., 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9

Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries

doi: 10.1016/S1872-5805(22)60630-9
Funds:  National Natural Scientific Foundation of China (51972270); Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (2021-TS-03); Fundamental Research Funds for the Central Universities.
More Information
  • Author Bio:

    XIE Jin-ming and ZHUANG Rong contributed equally to this work

  • Corresponding author: TAN De-ming, Ph. D, Associate Professor. E-mail: tandeming@cdu.edu.cn; XU Fei, Ph. D, Professor. E-mail: feixu@nwpu.edu.cn
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-07-24
  • Available Online: 2022-07-26
  • Publish Date: 2023-04-07
  • Sodium-ion batteries (SIBs) are regarded as one of the most promising candidates for the post-lithium-ion battery (LIB) era due to the abundance and low cost of sodium and their similar operating principles to LIBs. Because of their low sodium intercalation potential, high capacity, and good stability, carbon anode materials appear to be the key to practical applications. Heteroatom doping (e.g., sulfur, nitrogen, phosphorus, oxygen, boron doping) has proved to be an effective way of changing the physical and electrochemical properties of carbon materials to improve their energy storage. Among these, sulfur doping has been widely studied. The S atom has a large covalent radius to expand the interlayer spacing of carbons and thus increase the number of active sites for sodium storage. This review summarizes research progress in the design, synthesis, and electrochemical properties of sulfur-doped carbon anodes for SIBs, including the sodium storage mechanism, preparation strategies, and the way sulfur doping changes the structure of carbon materials, with the aim of improving its specific capacity, rate capability and cycle life in SIBs. Key problems of sulfur-doped carbon anodes are presented and possible solutions are considered.
  • loading
  • [1]
    Alvin S, Yoon D, Chandra C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon,2019,145:67-81. doi: 10.1016/j.carbon.2018.12.112
    [2]
    Huang Q, Deng J, Li X, et al. Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J]. Journal of Energy Storage,2020,32:101755. doi: 10.1016/j.est.2020.101755
    [3]
    Dong R, Wu F, Bai Y, et al. Sodium storage mechanism and optimization strategies for hard carbon anode of sodium ion batteries[J]. Acta Chimica Sinica,2021,79(12):1461-1476. doi: 10.6023/A21060284
    [4]
    Li J, Fleetwood J, Hawley W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews,2022,122(1):903-956.
    [5]
    Kong L, Yin L, Xu F, et al. Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions[J]. Journal of Energy Chemistry,2021,55:80-91. doi: 10.1016/j.jechem.2020.06.054
    [6]
    Yang J, Zhai Y, Zhang X, et al. Perspective on carbon anode materials for K+ storage: balancing the intercalation‐controlled and surface‐driven behavior[J]. Advanced Energy Materials,2021,11(29):2100856. doi: 10.1002/aenm.202100856
    [7]
    Zhang X, Yang J, Ren Z, et al. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy[J]. New Carbon Materials,2022,37(2):371-379. doi: 10.1016/S1872-5805(22)60601-2
    [8]
    Jiang G, Qiu Y, Lu Q, et al. Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage[J]. ACS Applied Materials & Interfaces,2019,11(44):41188-41195. doi: 10.1021/acsami.9b07060
    [9]
    Zhu Y, Xiao Y, Dou S, et al. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience,2021,1(1):13-27. doi: 10.1016/j.esci.2021.10.003
    [10]
    Fang C, Huang Y, Zhang W, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials,2016,6(5):1501727. doi: 10.1002/aenm.201501727
    [11]
    Huang Y, Fang C, Huang Y. Recent development on electrode materials with high performance and low cost for sodium-ion batteries[J]. Journal of the Chinese Ceramic Society,2021,49(2):256-271. doi: 10.14062/j.issn.0454-5648.20200753
    [12]
    Kang H, Liu Y, Cao K, et al. Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A,2015,3(35):17899-17913. doi: 10.1039/C5TA03181H
    [13]
    Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications,2014,5:4033. doi: 10.1038/ncomms5033
    [14]
    Li G, Luo D, Wang X, et al. Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene[J]. Advanced Functional Materials,2017,27(40):1702562. doi: 10.1002/adfm.201702562
    [15]
    Wu Y, Liu X, Yang Z, et al. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries[J]. Small,2016,12(26):3522-3529. doi: 10.1002/smll.201600606
    [16]
    Tang J, Peng X, Lin T, et al. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience,2021,1(2):203-211. doi: 10.1016/j.esci.2021.12.004
    [17]
    Xu F, Han H, Qiu Y, et al. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage[J]. Carbon,2020,167:896-905. doi: 10.1016/j.carbon.2020.05.081
    [18]
    Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [19]
    Li Y, Chen M, Liu B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials,2020,10(27):2000927. doi: 10.1002/aenm.202000927
    [20]
    Chen W, Wan M, Liu Q, et al. Heteroatom‐doped carbon materials: Synthesis, mechanism, and application for sodium‐ion batteries[J]. Small Methods,2019,3(4):1800323. doi: 10.1002/smtd.201800323
    [21]
    Wu T, Zhang W, Yang J, et al. Architecture engineering of carbonaceous anodes for high‐rate potassium‐ion batteries[J]. Carbon Energy,2021,3(4):554-581. doi: 10.1002/cey2.99
    [22]
    Qie L, Chen W, Xiong X, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):1500195. doi: 10.1002/advs.201500195
    [23]
    Kiciński W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: Synthesis and applications[J]. Carbon,2014,68:1-32. doi: 10.1016/j.carbon.2013.11.004
    [24]
    Wan H, Hu X. Sulfur-doped honeycomb-like carbon with outstanding electrochemical performance as an anode material for lithium and sodium ion batteries[J]. Journal of Colloid and Interface Science,2020,558:242-250. doi: 10.1016/j.jcis.2019.09.124
    [25]
    Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium‐ion batteries[J]. Journal of The Electrochemical Society,2000,147:1271. doi: 10.1149/1.1393348
    [26]
    Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters,2012,12(7):3783-3787. doi: 10.1021/nl3016957
    [27]
    Qiu S, Xiao L, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage[J]. Advanced Energy Materials,2017,7(17):1700403. doi: 10.1002/aenm.201700403
    [28]
    Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969
    [29]
    Li S, Qiu J, Lai C, et al. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries[J]. Nano Energy,2015,12:224-230. doi: 10.1016/j.nanoen.2014.12.032
    [30]
    Xu D, Chen C, Xie J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):1501929. doi: 10.1002/aenm.201501929
    [31]
    Jin Q, Li W, Wang K, et al. Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode[J]. Journal of Materials Chemistry A,2019,7(17):10239-10245. doi: 10.1039/C9TA02107H
    [32]
    Hong Z, Zhen Y, Ruan Y, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials,2018,30(29):1802035. doi: 10.1002/adma.201802035
    [33]
    Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219
    [34]
    Wang X, Li G, Hassan F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy,2015,15:746-754. doi: 10.1016/j.nanoen.2015.05.038
    [35]
    Chen W, Chen X, Qiao R, et al. Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene[J]. Carbon,2022,187:230-240. doi: 10.1016/j.carbon.2021.11.020
    [36]
    杨佳迎, 韩浩杰, Repich H, 等. 空心炭球在室温钠硫电池中的研究进展[J]. 新型炭材料,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4

    Yang J, Han H, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [37]
    Kim H, Yang H, Kang J, et al. Multifunctional disordered sulfur-doped carbon for efficient sodium-ion-exchange and 2-electron-transfer-dominant oxygen reduction reaction[J]. Carbon,2021,182:242-253. doi: 10.1016/j.carbon.2021.05.063
    [38]
    Li W, Zhou M, Li H, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8(10):2916-2921. doi: 10.1039/c5ee01985k
    [39]
    Garcia A G, Baltazar S E, Castro A H R, et al. Influence of S and P doping in a graphene sheet[J]. Journal of Computational and Theoretical Nanoscience,2008,5(11):2221-2229. doi: 10.1166/jctn.2008.1121
    [40]
    Tzadikov J, Levy N R, Abisdris L, et al. Bottom‐up synthesis of advanced carbonaceous anode materials containing sulfur for Na‐Ion batteries[J]. Advanced Functional Materials,2020,30(19):2000592. doi: 10.1002/adfm.202000592
    [41]
    Zou G, Wang C, Hou H, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries[J]. Small,2017,13(31):1700762. doi: 10.1002/smll.201700762
    [42]
    Jin Q, Wang K, Feng P, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials,2020,27:43-50. doi: 10.1016/j.ensm.2020.01.014
    [43]
    Liu S, Cai Y, Zhao X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor[J]. Journal of Power Sources,2017,360:373-382. doi: 10.1016/j.jpowsour.2017.06.029
    [44]
    Cha W, Kim I Y, Lee J M, et al. Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(30):27192-27199. doi: 10.1021/acsami.9b07657
    [45]
    Yue L, Xu W, Li K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science,2021,546:149168. doi: 10.1016/j.apsusc.2021.149168
    [46]
    Ye J, Zhao H, Song W, et al. Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode[J]. Journal of Power Sources,2019,412:606-614. doi: 10.1016/j.jpowsour.2018.12.002
    [47]
    Zou G, Hou H, Hu J, et al. General synthesis of heteroatom-doped hierarchical carbon toward excellent electrochemical energy storage[J]. Batteries & Supercaps,2019,2(8):712-722. doi: 10.1002/batt.201900030
    [48]
    Zhao G, Zou G, Hou H, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. Journal of Materials Chemistry A,2017,5(46):24353-24360. doi: 10.1039/C7TA07860A
    [49]
    Jiang T, Wang Y, Wang K, et al. A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2016,189:1-11. doi: 10.1016/j.apcatb.2016.02.009
    [50]
    Yang J, Zhou X, Wu D, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials,2017,29(6):1604108. doi: 10.1002/adma.201604108
    [51]
    Yu M, Yin Z, Yan G, et al. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber[J]. Journal of Power Sources,2020,449:227514. doi: 10.1016/j.jpowsour.2019.227514
    [52]
    Ni D, Sun W, Wang Z, et al. Heteroatom‐doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life[J]. Advanced Energy Materials,2019,9(19):1900036. doi: 10.1002/aenm.201900036
    [53]
    Li Y, Ni B, Li X, et al. High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers[J]. Nano-micro Letters,2019,11(1):60. doi: 10.1007/s40820-019-0291-z
    [54]
    Feng P, Wang W, Wang K, et al. A high-performance carbon with sulfur doped between interlayers and its sodium storage mechanism as anode material for sodium ion batteries[J]. Journal of Alloys and Compounds,2019,795:223-232. doi: 10.1016/j.jallcom.2019.04.338
    [55]
    Bai L, Sun Y, Tang L, et al. Sulfur and nitrogen co-doped carbon nanosheets for improved sodium ion storage[J]. Journal of Alloys and Compounds,2021,868:159080. doi: 10.1016/j.jallcom.2021.159080
    [56]
    Velez V, Ramos-Sánchez G, Lopez B, et al. Synthesis of novel hard mesoporous carbons and their application as anodes for Li and Na ion batteries[J]. Carbon,2019,147:214-226. doi: 10.1016/j.carbon.2019.02.083
    [57]
    Chen D, Huang Z, Sun S, et al. A flexible multi-channel hollow CNT/carbon nanofiber composites with S/N co-doping for sodium/potassium ion energy storage[J]. ACS Applied Materials & Interfaces,2021,13(37):44369-44378. doi: 10.1021/acsami.1c12470
    [58]
    Zhao Q, Meng Y, Li J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science,2019,481:473-483. doi: 10.1016/j.apsusc.2019.03.143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(2098) PDF Downloads(446) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return