Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
YANG Zhi, ZHOU Feng, ZHANG Hong-tao, QIN Jie-qiong, WU Zhong-shuai. Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors. New Carbon Mater., 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4
Citation: YANG Zhi, ZHOU Feng, ZHANG Hong-tao, QIN Jie-qiong, WU Zhong-shuai. Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors. New Carbon Mater., 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4

Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors

doi: 10.1016/S1872-5805(22)60633-4
Funds:  National Natural Science Foundation of China (22125903, 51872283, 22109040); Top-Notch Talent Program of Henan Agricultural University (30500947).
More Information
  • Corresponding author: QIN Jie-qiong, Professor. E-mail: qinjieqiong@henau.edu.cn; WU Zhong-Shuai, Professor. E-mail: wuzs@dicp.ac.cn
  • Received Date: 2022-07-05
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-07-29
  • Publish Date: 2022-10-01
  • Graphene-based 2D mesoporous materials have been considered ideal electrode materials for micro-supercapacitors (MSCs). 2D mesoporous nitrogen-doped carbon/graphene (mNC/G) nanosheets were prepared by the solution polymerization of aniline as the carbon and nitrogen precursor, in mixtures of graphene oxide as a guide for the 2D structure and silica nanospheres as a mesopore template. This was followed by leaching with dilute NaOH to remove the silica, freeze drying and carbonization. The nanosheets were formed from the templated mesoporous nitrogen-doped carbon decorating both sides of the graphene sheets. Precise regulation of the mesopore size and optimization of the electrochemical performance of the material were achieved. mNC/G with a pore size of 7 nm (mNC/G-7) had a specific capacitance of 267 F g−1, and quasi-solid-state planar MSCs based on it had a high volumetric capacitance of 21.0 F cm−3 and an energy density of 1.9 mWh cm−3, indicating the tremendous potential of 2D mNC/G for MSCs.
  • loading
  • [1]
    Shi X Y, Das P, Wu Z S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world[J]. ACS Energy Letters,2022,7:267-281. doi: 10.1021/acsenergylett.1c01854
    [2]
    Kyeremateng N A, Brouss T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology,2017,12:7-15. doi: 10.1038/nnano.2016.196
    [3]
    Qu Z, Zhu M S, Tang H M, et al. Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms[J]. Energy Storage Materials,2020,29:17-41. doi: 10.1016/j.ensm.2020.03.025
    [4]
    Zheng S H, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advanced Materials,2021,33:2005449. doi: 10.1002/adma.202005449
    [5]
    Zheng S H, Ma J X, Fang K X, et al. High-voltage potassium ion micr-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system[J]. Advanced Energy Materials,2021,11:2003835. doi: 10.1002/aenm.202003835
    [6]
    Zhang J H, Zhang, G X, Zhou T, et al. Recent developments of planar micro‐supercapacitors: Fabrication, properties, and applications[J]. Advanced Functional Materials,2020,30:1910000. doi: 10.1002/adfm.201910000
    [7]
    Lu B, Jin X T, Han Q, et al. Planar graphene-based microsupercapacitors[J]. Small,2021,17:2006827. doi: 10.1002/smll.202006827
    [8]
    Jiang Q, Lei Y, Liang H F, et al. Review of MXene electrochemical microsupercapacitors[J]. Energy Storage Materials,2020,27:78-95. doi: 10.1016/j.ensm.2020.01.018
    [9]
    Xiao H, Wu Z S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano,2017,11:7284-7292. doi: 10.1021/acsnano.7b03288
    [10]
    Qin J Q, Gao J M, Shi X Y, et al. Hierarchical ordered dual‐mesoporous polypyrrole/graphene nanosheets as bi‐functional active materials for high‐performance planar integrated system of micro‐supercapacitor and gas sensor[J]. Advanced Functional Materials,2020,30:1909756. doi: 10.1002/adfm.201909756
    [11]
    Wu Z S, Parvez K, Feng X L, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487. doi: 10.1038/ncomms3487
    [12]
    Zheng S H, Wu Z S, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials,2017,6:70-97. doi: 10.1016/j.ensm.2016.10.003
    [13]
    Qin J Q, Das P, Zheng S H, et al. A perspective on two-dimensional materials for planar micro-supercapacitors[J]. APL Materials,2019,7:090902. doi: 10.1063/1.5113940
    [14]
    Moon Y S, Kim D, Lee G, et al. Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnO electrodes and its application[J]. Carbon,2015,81:29-37. doi: 10.1016/j.carbon.2014.09.018
    [15]
    Kamboj N, Dey R S. Exploring the chemistry of “Organic/water-in-salt” electrolyte in graphene-polypyrrole based high-voltage (2.4V) microsupercapacitor[J]. Electrochimica Acta,2022,421:140499. doi: 10.1016/j.electacta.2022.140499
    [16]
    Peng L L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Letters,2013,13:2151-7. doi: 10.1021/nl400600x
    [17]
    Liu Y Q, Zhang B B, Xu Q, et al. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing[J]. Advanced Functional Materials,2018,28:1706592. doi: 10.1002/adfm.201706592
    [18]
    Liu Y, Liu X P, Dai Y, et al. Preparation of a N, S, P co-doped and oxidized porous carbon for the efficient adsorption of uranium(VI)[J]. New Carbon Materials,2021,36:1138-1146. doi: 10.1016/S1872-5805(21)60055-0
    [19]
    Wu J X, Yu J F, Liu J P, et al. MoSe2 nanosheets embedded in nitrogen/phosphorus co-doped carbon/graphene composite anodes for ultrafast sodium storage[J]. Journal of Power Sources,2020,476:228660. doi: 10.1016/j.jpowsour.2020.228660
    [20]
    Chen Z Y, Zhao S Q, Zhao H H, et al. Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications[J]. Chemical Engineering Journal,2021,409:127891. doi: 10.1016/j.cej.2020.127891
    [21]
    Huang L, Wang S, Zhang Y, et al. Preparation of a N-P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes[J]. New Carbon Materials,2021,36:1128-1135. doi: 10.1016/S1872-5805(21)60054-9
    [22]
    Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36:69-81. doi: 10.1016/S1872-5805(21)60005-7
    [23]
    Shi H D, Qin J Q, Huang K, et al. A two-dimensional mesoporous polypyrrole–graphene oxideHeterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie-International Edition,2020,59:2-9. doi: 10.1002/anie.201914768
    [24]
    Qiu P P, Zhao T, Fang Y, et al. Pushing the limit of ordered mesoporous materials via 2D self‐assembly for energy conversion and storage[J]. Advanced Functional Materials,2020,31:2007496. doi: 10.1002/adfm.202007496
    [25]
    Su S H, Wang X W, Xue J M. Nanopores in two-dimensional materials: Accurate fabrication[J]. Materials Horizons,2021,8:1390-1408. doi: 10.1039/D0MH01412E
    [26]
    Kashiwagi D, Sim S, Niwa T, et al. Protein nanotube selectively cleavable with DNA: Supramolecular polymerization of "DNA-appended molecular chaperones"[J]. Journal of the American Chemical Society,2018,140:26-29. doi: 10.1021/jacs.7b09892
    [27]
    Huang H B, Zhou F, Lu P F, et al. Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries[J]. Energy Storage Materials,2020,27:396-404. doi: 10.1016/j.ensm.2020.02.011
    [28]
    Cui J, Xing F F, Luo H, et al. General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors[J]. Journal of Energy Chemistry,2021,62:145-152. doi: 10.1016/j.jechem.2021.03.016
    [29]
    Tu S B, Su H, Sui D, et al. Mesoporous carbon nanomaterials with tunable geometries and porous structures fabricated by a surface-induced assembly strategy[J]. Energy Storage Materials,2021,35:602-609. doi: 10.1016/j.ensm.2020.11.042
    [30]
    Tian H, Qin J Q, Hou D, et al. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene[J]. Angewandte Chemie-International Edition,2019,58:10173-10178. doi: 10.1002/anie.201903684
    [31]
    Liu S H, Wang F X, Dong R H, et al. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size[J]. Advanced Materials,2016,28:8365-8370. doi: 10.1002/adma.201603036
    [32]
    Veeramani V, Raghavi G, Chen S M, et al. Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications[J]. Nano Express,2020,1:010036. doi: 10.1088/2632-959X/ab9240
    [33]
    Zhao N, Zhang P X, Luo D, et al. Direct production of porous carbon nanosheets/particle composites from wasted litchi shell for supercapacitors[J]. Journal of Alloys and Compounds,2019,788:677-684. doi: 10.1016/j.jallcom.2019.02.304
    [34]
    Ma Q H, Xi H T, Cui F, et al. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor[J]. Journal of Energy Storage,2022,45:103509. doi: 10.1016/j.est.2021.103509
    [35]
    Song B, Li L Y, Lin Z Y, et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities[J]. Nano Energy,2015,16:470-478. doi: 10.1016/j.nanoen.2015.06.020
    [36]
    Beidaghi M, Wang C L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials,2012,22:4501-4510. doi: 10.1002/adfm.201201292
    [37]
    El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications,2013,4:1475. doi: 10.1038/ncomms2446
    [38]
    Wang S, Wu Z S, Zheng S, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities[J]. ACS Nano,2017,11:4283-4291. doi: 10.1021/acsnano.7b01390
    [39]
    Zhang Q, Huang L, Chang Q H, et al. Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled graphene ink[J]. Nanotechnology,2016,27:105401. doi: 10.1088/0957-4484/27/10/105401
    [40]
    Wen F S, Hao C X, Xiang J Y, et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter[J]. Carbon,2014,75:236-243. doi: 10.1016/j.carbon.2014.03.058
  • ncm2022-0002C--Qjq-吴忠帅-支撑材料-.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(462) PDF Downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return