Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
HE Su-jiao, ZHANG Kai-qiang, ZOU Ya-jun, TIAN Zhi-hong. Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications. New Carbon Mater., 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6
Citation: HE Su-jiao, ZHANG Kai-qiang, ZOU Ya-jun, TIAN Zhi-hong. Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications. New Carbon Mater., 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6

Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications

doi: 10.1016/S1872-5805(22)60634-6
Funds:  This work was partly supported by the National Natural Science Foundation of China (52003251) and Henan Center for Outstanding Overseas Scientists (GZS2022014)
More Information
  • Next-generation wearable and portable devices require rechargeable microbatteries to provide energy storage. Three-dimensional (3D) printing, with its ability to build geometrically complex 3D structures, enables the manufacture of microbatteries of different sizes and shapes, and with high energy and power densities. Lightweight carbon materials have a great advantage over other porous metals as electrode materials for rechargeable batteries, because of their large specific surface area, superior electrical conductivity and high chemical stability. In recent years, a variety of rechargeable microbatteries of different types have been successfully printed using carbon-based inks. To optimize their electrochemical performance and extend their potential applications, it is important to analyze the design principles with respect to the 3D printing technique, printable carbon materials and promising applications. This paper provides a perspective on recent progress in the four major 3D printing techniques, elaborates on conductive carbon materials in addressing the challenging issues of 3D printed microbatteries, and summarizes their applications in a number of energy storage devices that integrate with wearable electronics. Current challenges and future opportunities for carbon-based microbattery fabrication by 3D printing techniques are discussed.
  • loading
  • [1]
    Zhang L, Ge L, He G, et al. Tuning the linkers in polymer-based cathodes to realize high sulfur content and high-performance potassium–sulfur batteries[J]. The Journal of Physical Chemistry C,2021,125:18604-18613.
    [2]
    Lyu Z, Lim G J H, Koh J J, et al. Design and manufacture of 3D-printed batteries[J]. Joule,2021,5:89-114. doi: 10.1016/j.joule.2020.11.010
    [3]
    Tian Z, Zhang Y, Zhu J, et al. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view[J]. Advanced Energy Materials,2021,11:2102489. doi: 10.1002/aenm.202102489
    [4]
    Huang J, Li Y, Xie R, et al. Structural engineering of cathodes for improved Zn-ion batteries[J]. Journal of Energy Chemistry,2021,58:147-155. doi: 10.1016/j.jechem.2020.09.035
    [5]
    Xu F, Qu C, Lu Q, et al. Atomic-Sn-enabled high utilization, large capacity, and long life Na anode[J]. Science Advances,2022,8:7489. doi: 10.1126/sciadv.abm7489
    [6]
    Zhang W, Liu H, Zhang X, et al. 3D printed micro-electrochemical energy storage devices: from design to integration[J]. Advanced Functional Materials,2021:2104909.
    [7]
    Zheng Y, Huang X, Chen J, et al. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications[J]. Materials,2021,14:3911. doi: 10.3390/ma14143911
    [8]
    Zong W, Chui N, Tian Z, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors[J]. Advanced Science,2021,8:2004142. doi: 10.1002/advs.202004142
    [9]
    Brown E, Yan P L, Tekik H. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design,2019,170:107689.
    [10]
    Liu C, Xu F, Liu Y. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing[J]. Electrochimica Acta,2019,314:81-88. doi: 10.1016/j.electacta.2019.05.082
    [11]
    Sun K, Wei, T S, Ahn B Y. 3D printing of interdigitated Li-ion microbattery architectures.[J]. Advanced Materials,2013,25:4539-4543. doi: 10.1002/adma.201301036
    [12]
    Ding J, Shen K, Du Z, et al. 3D-printed hierarchical porous frameworks for sodium storage[J]. ACS Applied Materials & Interfaces,2017,9:41871-41877.
    [13]
    Down M P, Martínez-Periñán E, Foster C W, et al. Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures[J]. Advanced Energy Materials,2019,9:1803019. doi: 10.1002/aenm.201803019
    [14]
    Nicolas P B V, Celzard V F A. 3D printing of carbon-based materials: A review[J]. Carbon,2021,183:449-485. doi: 10.1016/j.carbon.2021.07.036
    [15]
    Li Y, Huang J, Kang L, et al. Self-assembled carbon nanoribbons with the heteroatom doping used as ultrafast charging cathodes in zinc-ion hybrid supercapacitors[J]. Science China Materials,2022,65:1495-1502. doi: 10.1007/s40843-021-1923-6
    [16]
    Lai F, Feng J, Heil T, et al. Partially delocalized charge in Fe-doped NiCo2S4 nanosheet–mesoporous carbon-composites for high-voltage supercapacitors[J]. Journal of Materials Chemistry A,2019,7:19342-19347. doi: 10.1039/C9TA06250E
    [17]
    Tian Z, Lai F, Heil T, et al. Synthesis of carbon frameworks with N, O and S-lined pores from gallic acid and thiourea for superior CO2 adsorption and supercapacitors[J]. Science China Materials,2020,643:748-757.
    [18]
    Zhu T, Liu S, Wan K, et al. Fluorine and nitrogen dual-doped porous carbon nanosheet-enabled compact electrode structure for high volumetric energy storage[J]. ACS Applied Energy Materials,2020,3:4949-4957.
    [19]
    Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials,2016,28:2587-2594. doi: 10.1002/adma.201505391
    [20]
    Zhou S, Usman I, Wang Y, et al. 3D printing for rechargeable lithium metal batteries[J]. Energy Storage Materials,2021,38:141-156. doi: 10.1016/j.ensm.2021.02.041
    [21]
    Zhou H, Yang H, Yao S, et al. Synthesis of 3D printing materials and their electrochemical applications[J]. Chinese Chemical Letters,2022,33:3681-3694. doi: 10.1016/j.cclet.2021.11.018
    [22]
    Narita K, Saccone M A, Sun Y, et al. Additive manufacturing of 3D batteries: a perspective[J]. Journal of Materials Research,2022,37:1535-1546. doi: 10.1557/s43578-022-00562-w
    [23]
    Lyu Z, Lim G J H, Guo R, et al. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries[J]. Advanced Functional Materials,2019,29:1806658. doi: 10.1002/adfm.201806658
    [24]
    Qiao Y, Liu Y, Chen C, et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries[J]. Advanced Functional Materials,2018,28:1805899. doi: 10.1002/adfm.201805899
    [25]
    Togonon J J H, Chiang P C, Lin H J, et al. Pure carbon-based electrodes for metal-ion batteries[J]. Carbon Trends,2021,3:100035. doi: 10.1016/j.cartre.2021.100035
    [26]
    Zhang J, Li X, Fan S, et al. 3D-printed functional electrodes towards Zn-Air batteries[J]. Materials Today Energy,2020,16:100407. doi: 10.1016/j.mtener.2020.100407
    [27]
    Gao X, Yang X, Wang S, et al. A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries[J]. Journal of Materials Chemistry A,2020,8:278-286. doi: 10.1039/C9TA10623E
    [28]
    Lin X, Wang J, Gao X, et al. 3D printing of free-standing “O2 breathable” air electrodes for high-capacity and long-life Na-O2 batteries[J]. Chemistry of Materials,2020,32:3018-3027. doi: 10.1021/acs.chemmater.9b05360
    [29]
    Gao W, Pumera M. 3D printed nanocarbon frameworks for Li-ion battery cathodes[J]. Advanced Functional Materials,2021,31:2007285. doi: 10.1002/adfm.202007285
    [30]
    Lyu Z, Lim G J H, Guo R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability[J]. Energy Storage Materials,2020,24:336-342. doi: 10.1016/j.ensm.2019.07.041
    [31]
    Gao X, Sun Q, Yang X, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy,2019,56:595-603. doi: 10.1016/j.nanoen.2018.12.001
    [32]
    Praveen S, Sim G S, Shaji N, et al. 3D-printed self-standing electrodes for flexible Li-ion batteries[J]. Applied Materials Today,2022,26:100980. doi: 10.1016/j.apmt.2021.100980
    [33]
    Maurel A, Grugeon S, Fleutot B, et al. Three-dimensional printing of a LiFePO4/graphite battery cell via fused deposition modeling[J]. Scientific Reports,2019,9:18031. doi: 10.1038/s41598-019-54518-y
    [34]
    Wang J, Sun Q, Gao X, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces,2018,10:39794-39801.
    [35]
    Miyamoto K, Sasaki T, Nishi T, et al. 3D-microbattery architectural design optimization using automatic geometry generator and transmission-line model[J]. iScience,2020,23:101317. doi: 10.1016/j.isci.2020.101317
    [36]
    Rocha V G, García-Tuñon E, Botas C, et al. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks[J]. ACS Applied Materials & Interfaces,2017,9:37136-37145.
    [37]
    Zhang M, Mei H, Chang P, et al. 3D printing of structured electrodes for rechargeable batteries[J]. Journal of Materials Chemistry A,2020,8:10670. doi: 10.1039/D0TA02099K
    [38]
    Hu J, Jiang Y, Cui S, et al. 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. Advanced Energy Materials,2016,6:1600856. doi: 10.1002/aenm.201600856
    [39]
    Wang Y, Chen C, Xie H, et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials,2017,27:1703140. doi: 10.1002/adfm.201703140
    [40]
    Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications[J]. Chemical Society Reviews,2016,45:2740-2755. doi: 10.1039/C5CS00714C
    [41]
    Narita K, Citrin M A, Yang H, et al. 3D architected carbon electrodes for energy storage[J]. Advanced Energy Materials,2021,11:2002637. doi: 10.1002/aenm.202002637
    [42]
    Shen K, Mei H, Li B, et al. 3D printing sulfur copolymer-graphene architectures for Li-S batteries[J]. Advanced Energy Materials,2018,8:701527.
    [43]
    Jansson A, Pejryd L. Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering[J]. Additive Manufacturing,2016,9:7-13. doi: 10.1016/j.addma.2015.12.003
    [44]
    Yan M, Tian X, Peng G, et al. Hierarchically porous materials prepared by selective laser sintering[J]. Materials & Design,2017,135:62-68.
    [45]
    Lahtinen E Kukkonen E, Jokivartio J, et al. Preparation of highly porous carbonous electrodes by selective laser sintering[J]. ACS Applied Energy Materials,2019,2:1314-1318. doi: 10.1021/acsaem.8b01881
    [46]
    Wang P, Zhang H, Wang H, et al. Hybrid manufacturing of 3D hierarchical porous carbons for electrochemical storage[J]. Advanced Materials Technologies,2020,5:1901030. doi: 10.1002/admt.201901030
    [47]
    Foster C W, Down M P, Zhang Y, et al. 3D printed graphene based energy storage devices[J]. Scientifc Reports,2017,7:11. doi: 10.1038/s41598-017-00052-8
    [48]
    Foster C W, Zou G Q, Jiang Y, et al. Next generation additive manufacturing: tailorable graphene/polylactic(acid) filaments allow the fabrication of 3D printable porous anodes for utilisation within lithium-ion batteries[J]. Batteries & Supercaps,2019,2:448-453.
    [49]
    Ragones H, Menkin S, Kamir Y. Towards smart free form-factor 3D printable batteries[J]. Sustainable Energy Fuels,2018,2:1542-1549. doi: 10.1039/C8SE00122G
    [50]
    Maurel A, Courty M, Fleutot M, et al. Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing[J]. Chemistry of Materials,2018,30:7484-7493. doi: 10.1021/acs.chemmater.8b02062
    [51]
    Delannoy P-E, Riou B, Brousse T, et al. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries[J]. Journal of Power Sources,2015,287:261-268. doi: 10.1016/j.jpowsour.2015.04.067
    [52]
    Azhari A, Marzbanrad E, Yilman D, et al. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes[J]. Carbon,2017,119:257-266. doi: 10.1016/j.carbon.2017.04.028
    [53]
    Yang H, Feng Z, Teng X, et al. Three-dimensional printing of high-mass loading electrodes for energy storage applications[J]. InfoMat,2021:1-17.
    [54]
    Lacey S D, Kirsch D J, Li Y. Extrusion-based 3D printing of hierarchically porous advanced battery eectrodes[J]. Advanced Materials,2018,30:1705651. doi: 10.1002/adma.201705651
    [55]
    Zhang X, Wang J, Liu T. 3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling[J]. Composites Communications,2021,23:100600. doi: 10.1016/j.coco.2020.100600
    [56]
    Zhang X, Wang J L. Controllable interfacial adhesion behaviors of polymer-on-polymer surfaces during fused deposition modeling 3D printing process[J]. Chemical Physics Letters,2020,739:136959. doi: 10.1016/j.cplett.2019.136959
    [57]
    Mohamed O A, Masood S H, Bhowmik J Optimization of fused deposition modeling process parameters: a review of current research and future prospects [J]. Advances in Manufacturing, 2015, 3: 42-53.
    [58]
    Acord K A, Dupuy A D, Bertoli U S, et al. Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes[J]. Journal of Materials Processing Technology,2020,228:116827.
    [59]
    Yu Y, Chen M, Wang S, et al. Laser sintering of printed anodes for Al-air batteries[J]. Journal of the Electrochemical Society,2018,165:A584-A592. doi: 10.1149/2.0811803jes
    [60]
    Iwabuchi Y, Yan J. Laser sintering of silicon powder and carbon nanofibers for porous composite thick films[J]. Applied Physics Express,2015,8:026501. doi: 10.7567/APEX.8.026501
    [61]
    Sha J, Li Y, Salvatierra R V, et al. Three-dimensional printed graphene foams[J]. ACS Nano,2017,11:6860-6867. doi: 10.1021/acsnano.7b01987
    [62]
    Wang C, Taherabadi L, Jia G, et al. C-MEMS for the manufacture of 3D microbatteries[J]. Electrochemical and Solid-State Letters,2004,7:A435-A438. doi: 10.1149/1.1798151
    [63]
    Chen Q, Xu R, He Z, et al. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography[J]. Journal Of The Electrochemical Society,2017,164:A1852-A1857. doi: 10.1149/2.0651709jes
    [64]
    Milroy C, Manthiram A. Printed microelectrodes for scalable, high-areal-capacity lithium-sulfur batteries[J]. Chemical Communications,2016,52:4282-4285. doi: 10.1039/C5CC10503J
    [65]
    Milroy C A, Jang S, Fujimori T, et al. Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing[J]. Small,2017,13:1603786. doi: 10.1002/smll.201603786
    [66]
    Liu S, Wan K, Zhang C, et al. Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors[J]. Composites Communications,2021,24:100610. doi: 10.1016/j.coco.2020.100610
    [67]
    Yang J, Han H, Pepich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35:630-645. doi: 10.1016/S1872-5805(20)60519-4
    [68]
    Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59:19460-19467. doi: 10.1002/anie.202005118
    [69]
    Zou Y, Sun C, Li S, et al. Construction of flexible, integrated rechargeable Li battery based on the coaxial carbon/quaternary oxide composite anode [J]. New Carbon Materials, 2022:doi: 0.1016/S1872-5805(1022)60617-60616.
    [70]
    Ji K, Han J, Hirata A, et al. Lithium intercalation into bilayer graphene[J]. Nature Communications,2019,10:275. doi: 10.1038/s41467-018-07942-z
    [71]
    Xiong Z, Yun S Y, Jin H J. Applications of carbon nanotubes for lithium ion battery anodes[J]. Materials,2013,6:1138-1158. doi: 10.3390/ma6031138
    [72]
    Roselin L S, Juang R S, Hsieh C T, et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries[J]. Materials,2019,12:1229. doi: 10.3390/ma12081229
    [73]
    Zhang X, Yang J, Ren Z, et al. In situ observation of electrolyte-dependent interfacial evolution of graphite anode in sodium-ion batteries via atomic force microscopy[J]. New Carbon Materials,2022,37:371-380. doi: 10.1016/S1872-5805(22)60601-2
    [74]
    Reyes C, Somogyi R, Niu S, et al. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication[J]. ACS Applied Energy Materials,2018,1:5268-5279.
    [75]
    Egorov V, Gulzar U, Zhang Y, et al. Evolution of 3D printing methods and materials for electrochemical energy storage[J]. Advanced Materials,2020:2000556.
    [76]
    Vernardou D, Vasilopoulos K C, Kenanakis G. 3D printed graphene-based electrodes with high electrochemical performance[J]. Applied Physics A,2017,123:623. doi: 10.1007/s00339-017-1238-1
    [77]
    Kim J, Kumar R, Bandodkar A J, et al. Advanced materials for printed wearable electrochemical devices: a review[J]. Advanced Electronic Materials,2017,3:1600260. doi: 10.1002/aelm.201600260
    [78]
    Pei S, Cheng H M. The reduction of graphene oxide[J]. Carbon,2012,50:3210-3228. doi: 10.1016/j.carbon.2011.11.010
    [79]
    Li H, Liang J. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives[J]. Advanced Materials,2020,32:1805864. doi: 10.1002/adma.201805864
    [80]
    Guo B, Liang G, Yu S, et al. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials,2021,39:146-165. doi: 10.1016/j.ensm.2021.04.021
    [81]
    Zhang L, Zhang M, Guo H, et al. A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries[J]. Advanced Science,2022,9:2105598. doi: 10.1002/advs.202105598
    [82]
    He G, Liu Y, Gray D E, et al. Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: A mini-review[J]. Composites Communications,2021,27:100882. doi: 10.1016/j.coco.2021.100882
    [83]
    Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6:6962. doi: 10.1038/ncomms7962
    [84]
    Kordás K, Mustonen T, Tóth G, et al. Inkjet printing of electrically conductive patterns of carbon nanotubes[J]. Small,2006,2:1021-1025. doi: 10.1002/smll.200600061
    [85]
    Tian Z, Chui N, Lian R, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials,2020,27:591-598. doi: 10.1016/j.ensm.2019.12.016
    [86]
    Ghebretinsae F, Mikkelsen O, Akessa A D, et al. Strength analysis of 3D printed carbon fibre reinforced thermoplastic using experimental and numerical methods[J]. IOP Conference Series:Materials Science and Engineering,2019,700:012024. doi: 10.1088/1757-899X/700/1/012024
    [87]
    Huang P, Xia Z D, Cui S. 3D printing of carbon fiber-filled conductive silicon rubber[J]. Materials & Design,2018,142:11-21.
    [88]
    Athreya S R, Kalaitzidou K, Das S. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering[J]. Materials Science and Engineering:A,2010,527:2637-2642. doi: 10.1016/j.msea.2009.12.028
    [89]
    Hamzah H H B, Keattch O, Covill D, et al. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes[J]. Scientific Reports,2018,8:9135. doi: 10.1038/s41598-018-27188-5
    [90]
    Hong R, Zhao Z, Leng J, et al. Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network[J]. Composites Part B:Engineering,2019,176:107214. doi: 10.1016/j.compositesb.2019.107214
    [91]
    Costa G, Lopes P A, Sanati A L, et al. 3D printed stretchable liquid gallium battery[J]. Advanced Functional Materials,2022:2113232.
    [92]
    Richter E M, Rocha D P, Cardoso R M, et al. A complete additively manufactured (3D-printed) electrochemical sensing platform[J]. Analytical Chemistry,2019,91:12844. doi: 10.1021/acs.analchem.9b02573
    [93]
    Drews M, Tepner S, Haberzettl P, et al. Towards 3D-lithium ion microbatteries based on silicon/graphite blend anodes using a dispenser printing technique[J]. RSC Advances,2020,10:22440. doi: 10.1039/D0RA03161E
    [94]
    Sun C, Liu S, Shi X, et al. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery[J]. Chemical Engineering Journal,2020,381:122641. doi: 10.1016/j.cej.2019.122641
    [95]
    Gao X, Yanga X, Sun Q, et al. Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-Printing for designing thickness independent Li-S cathode[J]. Energy Storage Materials,2020,24:682-688. doi: 10.1016/j.ensm.2019.08.001
    [96]
    Cai J, Fan Z, Jin J, et al. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity[J]. Nano Energy,2020,75:104970. doi: 10.1016/j.nanoen.2020.104970
    [97]
    Chu T, Park S, Fu K, et al. 3D printing-enabled advanced electrode architecture design[J]. Carbon Energy,2021,3:424-439. doi: 10.1002/cey2.114
    [98]
    Iputera K, Huang J Y, Haw S C, et al. Revealing the absence of carbon in aprotic Li–CO2 batteries: a mechanism study toward CO2 reduction under a pure CO2 environment[J]. Journal of Materials Chemistry A,2022,10:3460-3468. doi: 10.1039/D1TA08870J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(1170) PDF Downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return