Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LIU Chen, JIA Ning, ZHAI Ji-zhou, ZHAO Peng-zhen, GUO Peng-fei, WANG Hong-qiang. The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells. New Carbon Mater., 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5
Citation: LIU Chen, JIA Ning, ZHAI Ji-zhou, ZHAO Peng-zhen, GUO Peng-fei, WANG Hong-qiang. The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells. New Carbon Mater., 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5

The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells

doi: 10.1016/S1872-5805(22)60639-5
More Information
  • Author Bio:

    刘 晨,贾 宁为共同第一作者

  • Corresponding author: GUO Peng-fei. E-mail: guopengfei@nwpu.edu.cn
  • Received Date: 2022-06-27
  • Rev Recd Date: 2022-08-12
  • Available Online: 2022-08-15
  • Publish Date: 2022-10-01
  • Organic-inorganic hybrid perovskite films made by low-temperature solution processing offer promising opportunities to fabricate flexible solar cells while formidable challenges regarding their environmental and mechanical stability remain due to their ionic and fragile nature. This work explores the possibility of chemical crosslinking between adjacent grains by the interfacial embedding of laser-derived carbon dots with halogen-terminated surfaces to improve the flexibility and stability of the polycrystalline films. A series of halogen-terminated carbon dots was generated in halobenzene solvents by pulsed laser irradiation in the liquid, and were then placed in the surface and grain boundaries of the perovskite film by an antisolvent procedure, where an immiscible solvent was poured onto the coating surface with a suspension containing carbon dots and perovskite precursors to cause precipitation. Strong interaction between perovskite and the carbon dots results in effective defect passivation, lattice anchoring and a change in the carrier dynamics of the perovskite films. Because of this, unencapsulated flexible perovskite solar cells after the interfacial embedding have power conversion efficiencies up to 20.26%, maintain over 90% of this initial value for 90 days under a relative humidity of 40% and have a thermal stability of 200 h even at 85 °C. The flexible devices withstand mechanical deformation, retaining over 80% of their initial values after 500 bend cycles to a radius of curvature of 4 mm.
  • loading
  • [1]
    Eperon G E,  Hörantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry,2017,1(12):0095. doi: 10.1038/s41570-017-0095
    [2]
    Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics,2014,8(7):506-514. doi: 10.1038/nphoton.2014.134
    [3]
    Dong Q F, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225):967-970. doi: 10.1126/science.aaa5760
    [4]
    Best research-cell efficiency chart (NREL, 2022)[Z]. https://www.nrel.gov/pv/cell-efficiency.html
    [5]
    Yang L, Feng J S, Liu Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials,2022,34(24):2201681.
    [6]
    Yang D, Yang R X, Priya S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications[J]. Angewandte Chemie International Edition,2019,58(14):4466-4483. doi: 10.1002/anie.201809781
    [7]
    Jia C M, Zhao X Y, Lai Y H, et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate[J]. Nano Energy,2019,60:476-484. doi: 10.1016/j.nanoen.2019.03.053
    [8]
    Hu X T, Meng X C, Zhang L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule,2019,3(9):2205-2218. doi: 10.1016/j.joule.2019.06.011
    [9]
    Li M, Yang Y G, Wang Z K, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability[J]. Advanced Materials,2019,31(25):1901519. doi: 10.1002/adma.201901519
    [10]
    Jeong G, Koo D, Seo J, et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer[J]. Nano Letters,2020,20(5):3718-3727. doi: 10.1021/acs.nanolett.0c00663
    [11]
    Luo Q, Ma H, Hou Q Z, et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials,2018,28(11):1706777. doi: 10.1002/adfm.201706777
    [12]
    Li N, Tao S, Chen Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nature Energy,2019,4(5):408-415. doi: 10.1038/s41560-019-0382-6
    [13]
    Guo P F, Ye Q, Liu C, et al . Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Advanced Functional Materials, 2020, 30(28): 2002639.
    [14]
    Guo P F, Ye Q, Yang X K, et al. Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7(6): 2497-2506.
    [15]
    Zhao W H, Guo P F, Su J, et al. Synchronous passivation of defects with low formation energies via terdentate anchoring enabling high performance perovskite solar cells with efficiency over 24%[J]. Advanced Functional Materials,2022,32(24):2200534. doi: 10.1002/adfm.202200534
    [16]
    Xue Q, Zhang H J, Zhu M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials,2017,29(15):1604847. doi: 10.1002/adma.201604847
    [17]
    Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. doi: 10.1002/advs.201901316
    [18]
    Guo P F, Yang X K, Ye Q, et al. Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance[J]. Advanced Energy Materials,2019,9(35):1901341. doi: 10.1002/aenm.201901341
    [19]
    Guo P F, Zhu H F, Zhao W H, et al. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%[J]. Advanced Materials,2021,33(36):2101590. doi: 10.1002/adma.202101590
    [20]
    Yu H, Zhao W H, Ren L, et al. Laser-generated supranano liquid metal as efficient electron mediator in hybrid perovskite solar cells[J]. Advanced Materials,2020,32(34):2001571. doi: 10.1002/adma.202001571
    [21]
    Luo Z, Wu F, Zhang T, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability[J]. Angewandte Chemie International Edition,2019,58(25):8520-8525. doi: 10.1002/anie.201904195
    [22]
    Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals[J]. ACS Energy Letters,2016,1(4):665-671. doi: 10.1021/acsenergylett.6b00337
    [23]
    Zhao J, Tang L, Xiang J, et al. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors[J]. Applied Physics Letters,2014,105(11):111116. doi: 10.1063/1.4896278
    [24]
    Zhang X R, Yang J Y, Ren Z Y, et al. In situ observation of electrolyte-dependent interfacial evolution of graphite anode in sodium-ion batteries via atomic force microscopy[J]. New Carbon Materials,2022,37(2):371-380. doi: 10.1016/S1872-5805(22)60601-2
    [25]
    Xu F, Zhai Y X, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [26]
    Wang Z Q, Xuan J N, Zhao Z G. et al.Versatile cutting method for producing fluorescent ultrasmall MXene sheets [J]. ACS Nano 2017, 11(11): 11559-11565.
    [27]
    Bu T, Wu L, Liu X, et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells[J]. Advanced Energy Materials,2017,7(20):1700576. doi: 10.1002/aenm.201700576
    [28]
    Bu T, Li J, Zheng F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications,2018,9:4609. doi: 10.1038/s41467-018-07099-9
    [29]
    Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science,2015,350(6265):1222-1225. doi: 10.1126/science.aad1818
    [30]
    Wang R, Xue J, Wang K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science,2019,366(6472):1509-1513. doi: 10.1126/science.aay9698
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(536) PDF Downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return