Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LU Yu-heng, TANG You-chen, TANG Ke-han, WU Ding-cai, MA Qian. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors. New Carbon Mater., 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3
Citation: LU Yu-heng, TANG You-chen, TANG Ke-han, WU Ding-cai, MA Qian. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors. New Carbon Mater., 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3

Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors

doi: 10.1016/S1872-5805(22)60641-3
Funds:  The authors are grateful for the financial support from the projects of National Natural Science Foundation of China (51925308 and 51872336) and National Key Research and Development Program of China (2021YFF0500600)
More Information
  • Three-dimensional carbon nanonetworks (3D CNNs) have interconnected conductive skeletons and accessible pore structures, which provide multi-level transport channels and thus have promising applications in many areas. However, the physical stacking of these network units to form long-range conductive paths is hard to accomplish, and the introduction of micropores and small mesopores is usually difficult. We report a simple yet efficient strategy to construct CNNs with a nitrogen-doped micro-meso-macroporous carbon nanonetwork using Schiff-base gelation followed by carbonization. Using a polyacrolein-grafted graphene oxide molecular brush as the building block and tetrakis (4-aminophenyl) methane as the crosslinking agent, the obtained molecular brush nanonetworks have a high carbon yield and largely retain the original morphology, leading to the formation of a 3D continuous nanonetwork after carbonization. The materials have a micro-meso-macroporous structure with a high surface area and a highly conductive N-doped carbon backbone. This unique structure has a large number of exposed active sites and excellent charge/mass transfer ability. When loaded on carbon cloth and used as the electrodes of a flexible supercapacitor, the CNN has a specific capacitance of 180 F g−1 at 1 A g−1 and a high capacitance retention of 91.4% after 10 000 cycles at 8 A g−1 .
  • loading
  • [1]
    Li Y Y, Chen N, Li Z L, et al. Reborn three-dimensional graphene with ultrahigh volumetric desalination capacity[J]. Advanced Materials,2021,33(48):e2105853. doi: 10.1002/adma.202105853
    [2]
    Zhang W C, Lan C W, Xie X H, et al. Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode[J]. Journal of Colloid and Interface Science,2019,546:53-59. doi: 10.1016/j.jcis.2019.03.043
    [3]
    Yang Z K, Zhao C M, Qu Y T, et al. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal[J]. Advanced Materials,2019,31(12):e1808043. doi: 10.1002/adma.201808043
    [4]
    Meng F L, Zhong H X, Bao D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries[J]. Journal of the Americal Chemical Society,2016,138(32):10226-10231. doi: 10.1021/jacs.6b05046
    [5]
    Kim M H, Choi J Y, Choi H K, et al. Carbon nanotube network structuring using two-dimensional colloidal crystal templates[J]. Advanced Materials,2008,20(3):457-461. doi: 10.1002/adma.200700956
    [6]
    Qiu H J, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-Air batteries[J]. Advanced Materials,2019,31(19):e1900843. doi: 10.1002/adma.201900843
    [7]
    Fu G T, Yan X X, Chen Y J, et al. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles[J]. Advanced Materials,2018,30(5):1704609. doi: 10.1002/adma.201704609
    [8]
    Duan J J, Chen S, Chambers B A, et al. 3D WS2 Nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials,2015,27(28):4234-4241. doi: 10.1002/adma.201501692
    [9]
    Song Z Y, Miao L, Ruhlmann L, et al. Self-Assembled carbon superstructuresachieving ultra-stable and fast proton-coupled charge storage kinetics[J]. Advanced Materials,2021,33(49):e2104148. doi: 10.1002/adma.202104148
    [10]
    Feng N, Meng R J, Zu L H, et al. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance[J]. Nature Communications,2019,10:1372. doi: 10.1038/s41467-019-09384-7
    [11]
    Hou M J, Gong S Q, Ji L L, et al. Three-dimensional porous ultrathin carbon networks reinforced PBAs-derived electrocatalysts for efficient oxygen evolution[J]. Chemical Engineering Journal,2021,419:129575. doi: 10.1016/j.cej.2021.129575
    [12]
    Ahsan M A, Puente Santiago A R, Hong Y, et al. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hyadrogen evolution reactions[J]. Journal of the Americal Chemical Society,2020,142(34):14688-14701. doi: 10.1021/jacs.0c06960
    [13]
    Wang C H, Kim J H, Tang J, et al. Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents[J]. Angewandte Chemie International Edition,2020,59(5):2066-2070. doi: 10.1002/anie.201913719
    [14]
    Shi Z, Zhang W B, Zhang F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Advanced Materials,2013,25(17):2422-2427. doi: 10.1002/adma.201204873
    [15]
    Ogawa T, Kumagai N and Shibasaki M. Self-assembling neodymium/sodium heterobimetallic asymmetric catalyst confined in a carbon nanotube network[J]. Angewandte Chemie International Edition,2013,52(24):6196-6201. doi: 10.1002/anie.201302236
    [16]
    Liu M L, Long X, Tang H Y, et al. The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance[J]. New Carbon Materials,2022,37(2):381-390. doi: 10.1016/S1872-5805(21)60099-9
    [17]
    Cheng L, Li X J, Li J, et al. Construction of three-dimensional all-carbon C60/graphene hybrids and their use in high performance supercapacitors[J]. New Carbon Materials,2020,35(6):684-695. doi: 10.1016/S1872-5805(20)60522-4
    [18]
    Peng G M, Xing L D, Barrio J, et al. A general synthesis of porous carbon nitride films with tunable surface area and photophysical properties[J]. Angewandte Chemie International Edition,2018,57(5):1186-1192. doi: 10.1002/anie.201711669
    [19]
    Tetik H, Orangi J, Yang G, et al. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance[J]. Advanced Materials,2022,34(2):e2104980. doi: 10.1002/adma.202104980
    [20]
    Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials,2017,29(24):1607017. doi: 10.1002/adma.201607017
    [21]
    Zhang S C, Liu H, Yu J Y, et al. Multi-functional flexible 2D carbon nanostructured networks[J]. Nature Communications,2020,11:5134. doi: 10.1038/s41467-020-18977-6
    [22]
    Xiao M, Li X Y, Song Q, et al. A fully 3D interconnected graphene-carbon nanotube web allows the study of glioma infiltration in bioengineered 3D cortex-like networks[J]. Advanced Materials,2018,30(52):e1806132. doi: 10.1002/adma.201806132
    [23]
    Wang P, Ren Y Y, Wang R T, et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries[J]. Nature Communications,2020,11:1576. doi: 10.1038/s41467-020-15416-4
    [24]
    Yao L, Wu Q, Zhang P X, et al. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density[J]. Advanced Materials,2018,30(11):1706054. doi: 10.1002/adma.201706054
    [25]
    Lu Y H, Tang Y C, Liu R L, et al. Multifunctional templating strategy for fabrication of Fe, N-codoped hierarchical porous carbon nanosheets[J]. Chinese Journal of Polymer Science,2022,40(1):2-6. doi: 10.1007/s10118-022-2656-x
    [26]
    Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [27]
    Yan L T, Xu Y L, Chen P, et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-Air batteries[J]. Advanced Materials,2020,32(48):e2003313. doi: 10.1002/adma.202003313
    [28]
    Zhang L P, Jaroniec M. Strategies for development of nanoporous materials with 2D building units[J]. Chemical Society Reviews,2020,49(16):6039-6055. doi: 10.1039/D0CS00185F
    [29]
    Wu X M, Huang B, Wang Q G, et al. Wide potential and high energy density for an asymmetric aqueous supercapacitor[J]. Journal of Materials Chemistry A,2019,7(32):19017-19025. doi: 10.1039/C9TA06428A
    [30]
    Han X, Wu C C, Li H, et al. Three-in-one alkylamine-tuned MoOx for lab-scale to real-life aqueous supercapacitors [J]. Advanced Functional Materials, 2022, 32 (22): 2113209.
    [31]
    Liu J, Yang F X, Cao L L, et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film[J]. Advanced Materials,2019,31(28):e1902264. doi: 10.1002/adma.201902264
    [32]
    Li G Y, Zhang B, Yan J, et al. Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO2 gas[J]. Journal of Materials Chemistry A,2014,2(44):18881-18888. doi: 10.1039/C4TA04429K
    [33]
    Tang Y C, Liu S H, Zheng B N, et al. Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers[J]. Chemical Communications,2018,54(81):11431-11434. doi: 10.1039/C8CC05703F
    [34]
    Zhu H X, Guo W, Wang J, et al. Tuneable design of a pulp fibre-based colorimetric sensor and its visual recognition mechanism for ppb levels of Ag+[J]. Cellulose,2019,26(17):9149-9161. doi: 10.1007/s10570-019-02713-5
    [35]
    Liu L Z, Mi Z, Li H H, et al. Highly selective and sensitive detection of amaranth by using carbon dots-based nanosensor[J]. RSC Advances,2019,9(45):26315-26320. doi: 10.1039/C9RA04494A
    [36]
    Dwivedi P K, Nair A, Mehare R S, et al. Experimental and theoretical investigations of the effect of heteroatom-doped carbon microsphere supports on the stability and storage capacity of nano-Co3O4 conversion anodes for application in lithium-ion batteries [J]. Nanoscale Advances, 2020, 2(7): 2914-2924.
    [37]
    Zhao J, Jiang Y F, Fan H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Advanced Materials,2017,29(11):1604569. doi: 10.1002/adma.201604569
    [38]
    Qin K Q, Wang L P, Wang N, et al. Nitrogen and oxygen co-doped 3D nanoporous duct-like graphene@carbon nano-cage hybrid films for high-performance multi-style supercapacitors[J]. Journal of Materials Chemistry A,2017,5(35):18535-18541. doi: 10.1039/C7TA05979E
    [39]
    Hursan D, Samu A A, Janovak L, et al. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes[J]. Joule,2019,3(7):1719-1733. doi: 10.1016/j.joule.2019.05.007
    [40]
    Wang Y H, Zhang D Y, Lu Y, et al. Cable-like double-carbon layers for fast ion and electron transport: an example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors[J]. Carbon,2019,143:335-342. doi: 10.1016/j.carbon.2018.11.034
    [41]
    Tao H C, Gao Y N, Talreja N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion[J]. Journal of Materials Chemistry A,2017,5(16):7257-7284. doi: 10.1039/C7TA00075H
    [42]
    Yan H J, Xie Y, Jiao Y Q, et al. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution[J]. Advanced Materials,2018,30(2):1704156. doi: 10.1002/adma.201704156
  • SI-20220147-Wdc.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(431) PDF Downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return