Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. Electrospun carbon nanofibers for use in the capacitive desalination of water. New Carbon Mater., 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0
Citation: Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. Electrospun carbon nanofibers for use in the capacitive desalination of water. New Carbon Mater., 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0

Electrospun carbon nanofibers for use in the capacitive desalination of water

doi: 10.1016/S1872-5805(22)60645-0
More Information
  • Capacitive deionization (CDI) has rapidly become a promising approach for water desalination. The technique removes salt from water by applying an electric potential between two porous electrodes to cause adsorption of charged species on the electrode surfaces. The nature of CDI favors the use of nanostructured porous carbon materials with high specific surface areas and appropriate surface functional groups. Electrospun carbon nanofibers (CNFs) are ideal as they have a high specific surface area and surface characteristics for doping/grafting with electroactive agents. Compared with powdered materials, CNF electrodes are free-standing and don’t require binders that increase resistivity. CNFs with an appropriate distribution of mesopores and micropores have better desalination performance. Compositing CNFs with faradaic materials improve ion storage by adding pseudocapacitance to the electric double layer capacitance. The use of electrospun CNFs as electrodes for CDI is summarized with emphasis on the major precursor materials used in their preparation and structure modification, and their relations to the performance in salt electrosorption.

  • loading
  • [1]
    Manish T, Divya S, Babu G S, et al. Desalination of Water[M]. In: Eyvaz M, Yüksel E, eds. Desalination and water treatment. London: IntechOpen, 2018, 333-347.
    [2]
    Boretti A, Rosa L. Reassessing the projections of the World Water Development Report[J]. npj Clean Water,2019,2(1):15. doi: 10.1038/s41545-019-0039-9
    [3]
    United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for A Sustainable World[R]. Paris: UNESCO, 2015.
    [4]
    Ng K C, Thu K, Kim Y, et al. Adsorption desalination: An emerging low-cost thermal desalination method[J]. Desalination,2013,308:161-179. doi: 10.1016/j.desal.2012.07.030
    [5]
    Wang G, Qian B, Wang Y, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry,2016,40(4):3786-3792. doi: 10.1039/C5NJ02963E
    [6]
    Li Q, Zheng Y, Xiao D, et al. Faradaic electrodes open a new era for capacitive deionization[J]. Advanced Science,2020,7(22):2002213. doi: 10.1002/advs.202002213
    [7]
    Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science,2013,58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
    [8]
    Bouhadana Y, Avraham E, Soffer A, et al. Several basic and practical aspects related to electrochemical deionization of water[J]. AIChE Journal,2010,56(3):779-789.
    [9]
    Liu J, Xiong Z, Wang S, et al. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization[J]. Electrochimica Acta,2016,210:171-180. doi: 10.1016/j.electacta.2016.05.133
    [10]
    Zhao X, Wei H, Zhao H, et al. Electrode materials for capacitive deionization: A review[J]. Journal of Electroanalytical Chemistry,2020,873:114416. doi: 10.1016/j.jelechem.2020.114416
    [11]
    Vafakhah S, Beiramzadeh Z, Saeedikhani M, et al. A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization[J]. Desalination,2020,493:114662. doi: 10.1016/j.desal.2020.114662
    [12]
    Zhang L, Aboagye A, Kelkar A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of Materials Science,2014,49(2):463-480. doi: 10.1007/s10853-013-7705-y
    [13]
    Lee H M, Kim H G, Kang S J, et al. Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers[J]. Journal of Industrial and Engineering Chemistry,2015,21:736-740. doi: 10.1016/j.jiec.2014.04.004
    [14]
    Gao L, Liu S, Dong Q, et al. Sulfur & nitrogen co-doped electrospun carbon nanofibers as freestanding electrodes for membrane capacitive deionization[J]. Separation and Purification Technology,2022,295:121280. doi: 10.1016/j.seppur.2022.121280
    [15]
    Li Y, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon,2018,130:377-383. doi: 10.1016/j.carbon.2018.01.035
    [16]
    Zhu G, Wang H, Xu H, et al. Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose[J]. Journal of Electroanalytical Chemistry,2018,822:81-88. doi: 10.1016/j.jelechem.2018.05.024
    [17]
    Hou Z, Jiang M, Cao Y, et al. Encapsulating ultrafine cobalt sulfides into multichannel carbon nanofibers for superior Li-ion energy storage[J]. Journal of Power Sources,2022,541:231682. doi: 10.1016/j.jpowsour.2022.231682
    [18]
    Yin D, Han C, Bo X, et al. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions[J]. Journal of Colloid and Interface Science,2019,533:578-587. doi: 10.1016/j.jcis.2018.08.118
    [19]
    Liu Y H, Yu T C, Chen Y W, et al. Incorporating manganese dioxide in carbon nanotube–chitosan as a pseudocapacitive composite electrode for high-performance desalination[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3196-3205.
    [20]
    Liu Y, Gao X, Zhang L, et al. Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization[J]. Desalination,2020,494:114665. doi: 10.1016/j.desal.2020.114665
    [21]
    Yang C M, Kim B H. Incorporation of MnO2 into boron-enriched electrospun carbon nanofiber for electrochemical supercapacitors[J]. Journal of Alloys and Compounds,2019,780:428-434. doi: 10.1016/j.jallcom.2018.11.347
    [22]
    Nagamine S, Ishimaru S, Taki K, et al. Fabrication of carbon-core/TiO2-sheath nanofibers by carbonization of poly(vinyl alcohol)/TiO2 composite nanofibers prepared via electrospinning and an interfacial sol–gel reaction[J]. Materials Letters,2011,65(19):3027-3029.
    [23]
    Lal M S, Sundara R. Electrospun porous carbon nanofibers/TiO2 composite coated over carbon cloth- A flexible electrode for capacitive deionization[J]. Ceramics International,2022,48(14):20351-20361. doi: 10.1016/j.ceramint.2022.03.319
    [24]
    Ma C, Wu L, Dirican M, et al. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors[J]. Journal of Colloid and Interface Science,2021,586:412-422. doi: 10.1016/j.jcis.2020.10.105
    [25]
    Li Y, Xu R, Qiao L, et al. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization[J]. Microporous and Mesoporous Materials,2022,338:111889. doi: 10.1016/j.micromeso.2022.111889
    [26]
    Nie P, Wang S, Shang X, et al. Self-supporting porous carbon nanofibers with opposite surface charges for high-performance inverted capacitive deionization[J]. Desalination,2021,520:115340. doi: 10.1016/j.desal.2021.115340
    [27]
    Xue Z, Xiong Q, Zou C, et al. Growth of carbon nanofibers through chemical vapor deposition for enhanced sodium ion storage[J]. Materials Research Bulletin,2021,133:111049. doi: 10.1016/j.materresbull.2020.111049
    [28]
    Hiremath N, Bhat G. High-performance Carbon Nanofibers and Nanotubes. In: Bhat G, ed. Structure and Properties of High-performance Fibers[M]. Oxford: Woodhead Publishing, 2017, 79-109.
    [29]
    Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J]. Progress in Polymer Science,2012,37(3):487-513. doi: 10.1016/j.progpolymsci.2011.07.001
    [30]
    Newcomb B A. Processing, structure, and properties of carbon fibers[J]. Composites Part A:Applied Science and Manufacturing,2016,91:262-282. doi: 10.1016/j.compositesa.2016.10.018
    [31]
    Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [32]
    Haider S, Haider A, Alghyamah A A, et al. Electrohydrodynamic Processes and Their Affecting Parameters. In: Haider S, Haider A, eds. Electrospinning and Electrospraying-techniques and Applications[M]. London: IntechOpen, 2019, 1-25.
    [33]
    Hussain T, Wang Y, Xiong Z, et al. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization[J]. Journal of Colloid and Interface Science,2018,532:343-351. doi: 10.1016/j.jcis.2018.07.129
    [34]
    Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science,2015,8(8):2296-2319.
    [35]
    Zhao R, Biesheuvel P M, Van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science,2012,5(11):9520-9527.
    [36]
    Oladunni J, Zain J H, Hai A, et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice[J]. Separation and Purification Technology,2018,207:291-320. doi: 10.1016/j.seppur.2018.06.046
    [37]
    Guo L, Ding M, Yan D, et al. High speed capacitive deionization system with flow-through electrodes[J]. Desalination,2020,496:114750. doi: 10.1016/j.desal.2020.114750
    [38]
    Mossad M, Zou L. A study of the capacitive deionisation performance under various operational conditions[J]. Journal of Hazardous Materials,2012,213-214:491-497. doi: 10.1016/j.jhazmat.2012.02.036
    [39]
    Ahmed M A, Tewari S. Capacitive deionization: Processes, materials and state of the technology[J]. Journal of Electroanalytical Chemistry,2018,813:178-192. doi: 10.1016/j.jelechem.2018.02.024
    [40]
    Liu Y, Du X, Wang Z, et al. MoS2 nanoflakes-coated electrospun carbon nanofibers for “rocking-chair” capacitive deionization[J]. Desalination,2021,520:115376. doi: 10.1016/j.desal.2021.115376
    [41]
    Chang J, Li Y, Duan F, et al. Selective removal of chloride ions by bismuth electrode in capacitive deionization[J]. Separation and Purification Technology,2020,240:116600. doi: 10.1016/j.seppur.2020.116600
    [42]
    Su X, Hatton T A. Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design[J]. Physical Chemistry Chemical Physics,2017,19(35):23570-23584. doi: 10.1039/C7CP02822A
    [43]
    Han B, Cheng G, Wang Y, et al. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal,2019,360:364-384. doi: 10.1016/j.cej.2018.11.236
    [44]
    Singh K, Zhang L, Zuilhof H, et al. Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon[J]. Desalination,2020,496:114647. doi: 10.1016/j.desal.2020.114647
    [45]
    Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science,2014,7(11):3683-3689.
    [46]
    Srimuk P, Husmann S, Presser V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater[J]. RSC advances,2019,9(26):14849-14858. doi: 10.1039/C9RA02570G
    [47]
    Wu M, Ni W, Hu J, et al. NASICON-structured NaTi2(PO4)3 for sustainable energy storage[J]. Nano-Micro Letters,2019,11(1):44. doi: 10.1007/s40820-019-0273-1
    [48]
    Mohamed A. Synthesis, Characterization, and Applications Carbon Nanofibers. In: Yaragalla S, Mishra R, Thomas S, Kalarikkal N, Maria H J, eds. Carbon-based Nanofillers and Their Rubber Nanocomposites[M]. Amsterdam: Elsevier, 2019, 243-257.
    [49]
    Qin W, Li J, Tu J, et al. Fabrication of porous chitosan membranes composed of nanofibers by low temperature thermally induced phase separation, and their adsorption behavior for Cu2+[J]. Carbohydrate Polymers,2017,178:338-346. doi: 10.1016/j.carbpol.2017.09.051
    [50]
    Zheng Z, Chen P, Xie M, et al. Cell environment-differentiated self-assembly of nanofibers[J]. Journal of the American Chemical Society,2016,138(35):11128-11131. doi: 10.1021/jacs.6b06903
    [51]
    Song Y, Fan J B, Wang S. Recent progress in interfacial polymerization[J]. Materials Chemistry Frontiers,2017,1(6):1028-1040. doi: 10.1039/C6QM00325G
    [52]
    Ejeromedoghene O, Zuo X, Ogungbesan S O, et al. Template synthesis and characterization of photochromic tungsten trioxide nanofibers [J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 7371–7379.
    [53]
    Jao D, Beachley V Z. Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing[J]. ACS Macro Letters,2019,8(5):588-595. doi: 10.1021/acsmacrolett.9b00167
    [54]
    Alghoraibi I, Alomari S. Different Methods for Nanofiber Design and Fabrication[M]. Handbook of Nanofibers, 2018: 1-46.
    [55]
    Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review[J]. European Polymer Journal,2020,138:109963. doi: 10.1016/j.eurpolymj.2020.109963
    [56]
    Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions[J]. Progress in Polymer Science,2010,35(7):868-892. doi: 10.1016/j.progpolymsci.2010.03.003
    [57]
    Soltani S, Khanian N, Choong T S Y, et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications[J]. New Journal of Chemistry,2020,44(23):9581-9606. doi: 10.1039/D0NJ01071E
    [58]
    Kaur S, Sundarrajan S, Rana D, et al. Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane[J]. Journal of Membrane Science,2012,392-393:101-111. doi: 10.1016/j.memsci.2011.12.005
    [59]
    El Messiry M, Fadel N. Study of poly(vinyl chloride) nanofiber structured assemblies as oil sorbents[J]. The Journal of The Textile Institute,2019,110(8):1114-1125. doi: 10.1080/00405000.2018.1541436
    [60]
    Huang L, Arena J T, Manickam S S, et al. Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification[J]. Journal of Membrane Science,2014,460:241-249. doi: 10.1016/j.memsci.2014.01.045
    [61]
    Lalia B S, Guillen-Burrieza E, Arafat H A, et al. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation[J]. Journal of Membrane Science,2013,428:104-115. doi: 10.1016/j.memsci.2012.10.061
    [62]
    Tijing L D, Woo Y C, Johir M A H, et al. A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation[J]. Chemical Engineering Journal,2014,256:155-159. doi: 10.1016/j.cej.2014.06.076
    [63]
    Pan H, Yang J, Wang S, et al. Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization[J]. Journal of Materials Chemistry A,2015,3(26):13827-13834. doi: 10.1039/C5TA02954F
    [64]
    Ramakrishna S, Fujihara K, Teo W-E, et al. Electrospun nanofibers: solving global issues[J]. Materials Today,2006,9(3):40-50. doi: 10.1016/S1369-7021(06)71389-X
    [65]
    Lu X, Wang C, Favier F, et al. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance[J]. Advanced Energy Materials,2017,7(2):1601301. doi: 10.1002/aenm.201601301
    [66]
    Hwang M, Karenson M O, Elabd Y A. High production rate of high purity, high fidelity Nafion nanofibers via needleless electrospinning[J]. ACS Applied Polymer Materials,2019,1(10):2731-2740. doi: 10.1021/acsapm.9b00681
    [67]
    He J H. On the height of Taylor cone in electrospinning[J]. Results in Physics,2020,17:103096. doi: 10.1016/j.rinp.2020.103096
    [68]
    Kaur S, Gopal R, Ng W J, et al. Next-generation fibrous media for water treatment[J]. MRS Bulletin,2008,33(1):21-26. doi: 10.1557/mrs2008.10
    [69]
    Tarus B, Fadel N, Al-Oufy A, et al. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats[J]. Alexandria Engineering Journal,2016,55(3):2975-2984. doi: 10.1016/j.aej.2016.04.025
    [70]
    Ditaranto N, Basoli F, Trombetta M, et al. Electrospun nanomaterials implementing antibacterial inorganic nanophases[J]. Applied Sciences,2018,8(9):1643. doi: 10.3390/app8091643
    [71]
    Storck J L, Grothe T, Tuvshinbayar K, et al. Stabilization and incipient carbonization of electrospun polyacrylonitrile nanofibers fixated on aluminum substrates[J]. Fibers,2020,8(9):55. doi: 10.3390/fib8090055
    [72]
    Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability,2007,92(8):1421-1432. doi: 10.1016/j.polymdegradstab.2007.03.023
    [73]
    Faraji S, Yardim M F, Can D S, et al. Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers[J]. Journal of Applied Polymer Science,2017,134(2):44381. doi: 10.1002/app.44381
    [74]
    Jun Y R, Kim B H. Effects of heat treatment on the hierarchical porous structure and electro-capacitive properties of RuO2/activated carbon nanofiber composites[J]. Bulletin of the Korean Chemical Society,2016,37(11):1820-1826. doi: 10.1002/bkcs.10981
    [75]
    Barua B, Saha M C. Studies of reaction mechanisms during stabilization of electrospun polyacrylonitrile carbon nanofibers[J]. Polymer Engineering & Science,2018,58(8):1315-1321.
    [76]
    Wu M, Wang Q, Li K, et al. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers[J]. Polymer Degradation and Stability,2012,97(8):1511-1519. doi: 10.1016/j.polymdegradstab.2012.05.001
    [77]
    Deng L, Young R J, Kinloch I A, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers[J]. ACS applied materials & interfaces,2013,5(20):9983-9990.
    [78]
    Liu Y, Qin W, Wang Q, et al. Glassy carbon nanofibers from electrospun cellulose nanofiber[J]. Journal of Materials Science,2015,50(2):563-569. doi: 10.1007/s10853-014-8612-6
    [79]
    Wang M X, Huang Z H, Kang F, et al. Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins[J]. Materials Letters,2011,65(12):1875-1877. doi: 10.1016/j.matlet.2011.03.095
    [80]
    Bai Y, Huang Z H, Kang F. Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin[J]. Carbon,2014,66:705-712. doi: 10.1016/j.carbon.2013.09.074
    [81]
    Wang L, Huang Z H, Yue M, et al. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning[J]. Chemical Engineering Journal,2013,218:232-237. doi: 10.1016/j.cej.2012.12.042
    [82]
    Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal,2014,252:30-37. doi: 10.1016/j.cej.2014.04.099
    [83]
    Zhang S J, Yu H Q, Feng H M. PVA-based activated carbon fibers with lotus root-like axially porous structure[J]. Carbon,2006,44(10):2059-2068. doi: 10.1016/j.carbon.2005.12.047
    [84]
    Ekabutr P, Ariyathanakul T, Chaiyo S, et al. Carbonized electrospun polyvinylpyrrolidone/metal hybrid nanofiber composites for electrochemical applications[J]. Journal of Applied Polymer Science,2018,135(1):45639. doi: 10.1002/app.45639
    [85]
    Dong L, Wang G, Li X, et al. PVP-derived carbon nanofibers harvesting enhanced anode performance for lithium ion batteries[J]. RSC Advances,2016,6(5):4193-4199. doi: 10.1039/C5RA23924A
    [86]
    Wang P, Zhang D, Ma F, et al. Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone[J]. Nanoscale,2012,4(22):7199-7204. doi: 10.1039/c2nr32249h
    [87]
    García-Mateos F J, Ruiz-Rosas R, María Rosas J, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology,2020,241:116724. doi: 10.1016/j.seppur.2020.116724
    [88]
    Deng H, Chen X, Tan Y, et al. Lignin-derived porous and microcrystalline carbon for flow-electrode capacitive deionization[J]. Int. J. Electrochem. Sci,2021,16(2):210231.
    [89]
    Ma X, Kolla P, Zhao Y, et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance[J]. Journal of Power Sources,2016,325:541-548. doi: 10.1016/j.jpowsour.2016.06.073
    [90]
    Wei J, Geng S, Kumar M, et al. Investigation of structure and chemical composition of carbon nanofibers developed from renewable precursor[J]. Frontiers in Materials,2019, 6:334. doi: 10.3389/fmats.2019.00334
    [91]
    Ma C, Li Z, Li J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science,2018,456:568-576. doi: 10.1016/j.apsusc.2018.06.189
    [92]
    Cho M, Ko F K, Renneckar S. Impact of thermal oxidative stabilization on the performance of lignin-based carbon nanofiber mats[J]. ACS Omega,2019,4(3):5345-5355. doi: 10.1021/acsomega.9b00278
    [93]
    Clingerman M L. Development and modelling of electrically conductive composite materials[D]. Ph.D. Thesis. Michigan Technological University, MICH 2001.
    [94]
    Park S H, Kim C, Yang K S. Preparation of carbonized fiber web from electrospinning of isotropic pitch[J]. Synthetic Metals,2004,143(2):175-179. doi: 10.1016/j.synthmet.2003.11.006
    [95]
    Le T, Yang Y, Huang Z, et al. Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance[J]. Journal of Power Sources,2015,278:683-692. doi: 10.1016/j.jpowsour.2014.12.055
    [96]
    Kim C, Choi Y O, Lee W J, et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions[J]. Electrochimica Acta,2004,50(2):883-887.
    [97]
    Yang K S, Edie D D, Lim D Y, et al. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution[J]. Carbon,2003,41(11):2039-2046. doi: 10.1016/S0008-6223(03)00174-X
    [98]
    Lee H M, An K H, Kim B J. Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers[J]. Carbon letters,2014,15(2):146-150. doi: 10.5714/CL.2014.15.2.146
    [99]
    Ju Y W, Park S H, Jung H R, et al. Electrospun activated carbon nanofibers electrodes based on polymer blends[J]. Journal of The Electrochemical Society,2009,156(6):A489. doi: 10.1149/1.3116245
    [100]
    Tavanai H, Jalili R, Morshed M. Effects of fiber diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibers[J]. Surface and Interface Analysis,2009,41(10):814-819. doi: 10.1002/sia.3104
    [101]
    Wu Y B, Bi J, Lou T, et al. Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2[J]. International Journal of Minerals, Metallurgy, and Materials,2015,22(4):437-445. doi: 10.1007/s12613-015-1091-1
    [102]
    Fan Q, Ma C, Wu L, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances,2019,9(12):6419-6428. doi: 10.1039/C8RA07587E
    [103]
    Deng L, Young R J, Kinloch I A, et al. Carbon nanofibres produced from electrospun cellulose nanofibres[J]. Carbon,2013,58:66-75. doi: 10.1016/j.carbon.2013.02.032
    [104]
    Sheng J, Ma C, Ma Y, et al. Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors[J]. International Journal of Hydrogen Energy,2016,41(22):9383-9393. doi: 10.1016/j.ijhydene.2016.04.076
    [105]
    Song Y M. Preparation and characterization of electrospun lignin carbon fibers for capacitive deionization[D]. MSc. Thesis. Chosun University Graduate School, Gwangju, 2017.
    [106]
    Altin Y, Bedeloğlu A. Polyacrylonitrile nanofiber optimization as precursor of carbon nanofibers for supercapacitors[J]. Journal of Innovative Science and Engineering (JISE),2020,4(2):69-83. doi: 10.38088/jise.726792
    [107]
    Zhang Y, Xue Q, Li F, et al. Removal of heavy metal ions from wastewater by capacitive deionization using polypyrrole/chitosan composite electrode[J]. Adsorption Science & Technology,2019,37(3-4):205-216.
    [108]
    Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [109]
    Zhang B, Kang F, Tarascon J M, et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science,2016,76:319-380. doi: 10.1016/j.pmatsci.2015.08.002
    [110]
    Zhang Y, Shi Q, Song J, et al. A facile strategy for Co3O4/Co nanoparticles encapsulated in porous N-doped carbon nanofibers towards enhanced lithium storage performance[J]. Journal of Porous Materials,2020,27(1):1-9. doi: 10.1007/s10934-019-00785-z
    [111]
    Zhang B, Yu Y, Huang Z, et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles[J]. Energy & Environmental Science,2012,5(12):9895-9902.
    [112]
    El-Deen A G, Barakat N A M, Khalil K A, et al. Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process[J]. Journal of Materials Chemistry A,2013,1(36):11001-11010. doi: 10.1039/c3ta12450a
    [113]
    Liu J, Wang S, Yang J, et al. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination[J]. Desalination,2014,344:446-453. doi: 10.1016/j.desal.2014.04.015
    [114]
    Wang G, Pan C, Wang L, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta,2012,69:65-70. doi: 10.1016/j.electacta.2012.02.066
    [115]
    Jo E, Yeo J G, Kim D K, et al. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends[J]. Polymer International,2014,63(8):1471-1477. doi: 10.1002/pi.4645
    [116]
    Su Y J, Ko T H, Lin J H. Preparation of ultra-thin PAN-based activated carbon fibers with physical activation[J]. Journal of Applied Polymer Science,2008,108(6):3610-3617. doi: 10.1002/app.27982
    [117]
    Kim D W, Kil H S, Nakabayashi K, et al. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model[J]. Carbon,2017,114:98-105. doi: 10.1016/j.carbon.2016.11.082
    [118]
    Yang Y, Le T, Kang F, et al. Polymer blend techniques for designing carbon materials[J]. Carbon,2017,111:546-568. doi: 10.1016/j.carbon.2016.10.047
    [119]
    Lee H M, Kim H G, An K H, et al. Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation[J]. Carbon letters,2014,15(1):71-76. doi: 10.5714/CL.2014.15.1.071
    [120]
    Zouli N, Hameed R M A, Abutaleb A, et al. Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance[J]. Journal of Materials Research and Technology,2021,15:3795-3806. doi: 10.1016/j.jmrt.2021.09.129
    [121]
    Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10815-10822.
    [122]
    Guo L, Zhang J, Ding M, et al. Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization[J]. Separation and Purification Technology,2021,266:118593. doi: 10.1016/j.seppur.2021.118593
    [123]
    Chen L, Xu X, Wan L, et al. Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors[J]. Materials Chemistry Frontiers,2021,5(8):3480-3488. doi: 10.1039/D0QM00946F
    [124]
    Liu Y, Gao X, Wang Z, et al. Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization[J]. Chemical Engineering Journal,2021,403:126326. doi: 10.1016/j.cej.2020.126326
    [125]
    Liu Y, Ma J, Lu T, et al. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization[J]. Scientific Reports,2016,6(1):32784. doi: 10.1038/srep32784
    [126]
    Liu N L, Sun S H, Hou C H. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology,2019,215:403-409. doi: 10.1016/j.seppur.2019.01.029
    [127]
    Zhan Y, Nie C, Li H, et al. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers[J]. Electrochimica Acta,2011,56(9):3164-3169. doi: 10.1016/j.electacta.2011.01.059
    [128]
    Xie Z, Shang X, Yan J, et al. Biomass-derived porous carbon anode for high-performance capacitive deionization[J]. Electrochimica Acta,2018,290:666-675. doi: 10.1016/j.electacta.2018.09.104
    [129]
    Tian S, Zhang Z, Zhang X, et al. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline[J]. Journal of Colloid and Interface Science,2019,537:247-255. doi: 10.1016/j.jcis.2018.11.025
    [130]
    Liu X, Liu H, Mi M, et al. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization[J]. Separation and Purification Technology,2019,224:44-50. doi: 10.1016/j.seppur.2019.05.010
    [131]
    Peng W, Wang W, Han G, et al. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization[J]. Desalination,2020,473:114191. doi: 10.1016/j.desal.2019.114191
    [132]
    Mohanapriya K, Ghosh G, Jha N. Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode[J]. Electrochimica Acta,2016,209:719-729. doi: 10.1016/j.electacta.2016.03.111
    [133]
    Wei K, Zhang Y, Han W, et al. A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study[J]. Desalination,2017,420:70-78. doi: 10.1016/j.desal.2017.07.001
    [134]
    Kim S, Lee J, Kim C, et al. Na2FeP2O7 as a novel material for hybrid capacitive deionization[J]. Electrochimica Acta,2016,203:265-271. doi: 10.1016/j.electacta.2016.04.056
    [135]
    Hameed R M A, Zouli N, Abutaleb A, et al. Improving water desalination performance of electrospun carbon nanofibers by supporting with binary metallic carbide nanoparticles[J]. Ceramics International,2022,48(4):4741-4753. doi: 10.1016/j.ceramint.2021.11.010
    [136]
    Ding M, Bannuru K K R, Wang Y, et al. Free-standing electrodes derived from metal–organic frameworks/nanofibers hybrids for membrane capacitive deionization[J]. Advanced Materials Technologies,2018,3(11):1800135. doi: 10.1002/admt.201800135
    [137]
    Han Y, Xu Y, Zhang S, et al. Progress of improving mechanical strength of electrospun nanofibrous membranes[J]. Macromolecular Materials and Engineering,2020,305(11):2000230. doi: 10.1002/mame.202000230
    [138]
    Nie G, Zhao X, Luan Y, et al. Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges[J]. Nanoscale,2020,12(25):13225-13248. doi: 10.1039/D0NR03425H
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article Views(871) PDF Downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return