Turn off MathJax
Article Contents
ZHANG Feng, LI Bo-lan, JIAO Meng-xiao, LI Yan-bo, WANG Xin, YANG Yu, YANG Yu-qiu, ZHANG Xiao-hua. Wet-composition-induced amorphous adhesion toward a high interfacial shear strength between carbon fiber and polyetherketoneketone. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60646-2
Citation: ZHANG Feng, LI Bo-lan, JIAO Meng-xiao, LI Yan-bo, WANG Xin, YANG Yu, YANG Yu-qiu, ZHANG Xiao-hua. Wet-composition-induced amorphous adhesion toward a high interfacial shear strength between carbon fiber and polyetherketoneketone. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60646-2

Wet-composition-induced amorphous adhesion toward a high interfacial shear strength between carbon fiber and polyetherketoneketone

doi: 10.1016/S1872-5805(22)60646-2
Funds:  This work was supported by the Fundamental Research Funds for the Central Universities (2232021G-01) and National Natural Science Foundation of China (62176158)
More Information
  • Interfacial adhesion between carbon fiber (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. Therefore, it is of great importance to impregnate PEKK into CF bundles as efficiently as possible. Here we report that owing to the high dissolubility, PEKK can be introduced onto CF surfaces via a wet strategy. The excellent wettability of PEKK guarantees a full covering and tight binding on CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. Furthermore, the interior of CF bundles can be completely and uniformly filled with PEKK by the solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS can reach 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK confined in the limited spacing between CFs.
  • loading
  • [1]
    Coulson M, Quiroga Cortés L, Dantras E, et al. Dynamic rheological behavior of poly(ether ketone ketone) from solid state to melt state[J]. Journal of Applied Polymer Science,2018,135(27):46456. doi: 10.1002/app.46456
    [2]
    Choupin T, Debertrand L, Fayolle B, et al. Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers[J]. Polymer Crystallization,2019,2(6):e10086.
    [3]
    Veazey D, Hsu T, Gomez E D. Enhancing resistance of poly(ether ketone ketone) to high-temperature steam through crosslinking and crystallization control[J]. Journal of Applied Polymer Science,2019,136(27):47727. doi: 10.1002/app.47727
    [4]
    Zhang X. Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties[J]. Journal of Composite Materials,2021,55(15):2115-2132. doi: 10.1177/0021998320981134
    [5]
    Derisi B, Hoa SV, Xu D, et al. Mechanical behavior of carbon/PEKK thermoplastic composite tube under bending load[J]. Journal of Thermoplastic Composite Materials,2011,24(1):29-49. doi: 10.1177/0892705710367978
    [6]
    Mazur R L, Cândido G M, Rezende M C, et al. Accelerated aging effects on carbon fiber PEKK composites manufactured by hot compression molding[J]. Journal of Thermoplastic Composite Materials,2016,29(10):1429-1442. doi: 10.1177/0892705714564283
    [7]
    Tadini P, Grange N, Chetehouna K, et al. Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components[J]. Aerospace Science and Technology,2017,65:106-116. doi: 10.1016/j.ast.2017.02.011
    [8]
    Hou M, De Weger D. Optimisation of manufacturing conditions of carbon fibre reinforced polyetherketoneketone (PEKK) composite[J]. Advanced Materials Research,2012,399-401:289-293.
    [9]
    Chen E J H, Hsiao B S. The effects of transcrystalline interphase in advanced polymer composites[J]. Polymer Engineering and Science,1992,32(4):280-286. doi: 10.1002/pen.760320408
    [10]
    Alexandre M A, Dantras E, Lacabanne C, et al. Effect of PEKK oligomers sizing on the dynamic mechanical behavior of poly(ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science,2020,137(24):48818. doi: 10.1002/app.48818
    [11]
    Hassan E A M, Yang L, Elagib T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [12]
    Chen J, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology,2018,154:175-186. doi: 10.1016/j.compscitech.2017.11.005
    [13]
    Wang Y Q, Zhang F Q, Sherwood P M A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 25. Interfacial interactions between PEKK polymer and carbon fibers electrochemically oxidized in nitric acid and degradation in a saline solution[J]. Chemistry of Materials,2001,13(3):832-841. doi: 10.1021/cm000555t
    [14]
    Li J. Interfacial studies on the ozone and air-oxidation-modified carbon fiber reinforced PEEK composites[J]. Surface and Interface Analysis,2009,41(4):310-315. doi: 10.1002/sia.3023
    [15]
    Lee H S, Kim S Y, Noh Y J, Kim S Y. Design of microwave plasma and enhanced mechanical properties of thermoplastic composites reinforced with microwave plasma-treated carbon fiber fabric[J]. Composites Part B,2014,60:621-626. doi: 10.1016/j.compositesb.2013.12.064
    [16]
    Ho K K C, Kolliopoulos A, Lamoriniere S, et al. Atmospheric plasma fluorination as a means to improve the mechanical properties of short-carbon fibre reinforced poly (vinylidene fluoride)[J]. Composites Part A,2010,41(9):1115-1122. doi: 10.1016/j.compositesa.2010.04.009
    [17]
    He Z, Zhang X, Chen M, et al. Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites[J]. Journal of Applied Polymer Science,2013,129(6):3366-3372. doi: 10.1002/app.39096
    [18]
    Lu C, Wang J, Lu X, et al. Wettability and interfacial properties of carbon fiber and poly(ether ether ketone) fiber hybrid composite[J]. ACS Applied Materials & Interfaces,2019,11(34):31520-31531.
    [19]
    Ji X, Dai Y, Zheng B L, et al. Interface end theory and reevaluation in interfacial strength test methods[J]. Composite Interfaces,2003,10(6):567-580. doi: 10.1163/156855403322667278
    [20]
    Lei C, Zhao J, Zou J, et al. Assembly dependent interfacial property of carbon nanotube fibers with epoxy and its enhancement via generalized surface sizing[J]. Advanced Engineering Materials,2016,18(5):839-845. doi: 10.1002/adem.201500379
    [21]
    Zhi C, Long H, Miao M. Influence of microbond test parameters on interfacial shear strength of fiber reinforced polymer-matrix composites[J]. Composites Part A,2017,100:55-63. doi: 10.1016/j.compositesa.2017.05.004
    [22]
    Zykaite R, Purgleitner B, Stadlbauer W, et al. Microdebond test development and interfacial shear strength evaluation of basalt and glass fibre reinforced polypropylene composites[J]. Journal of Composite Materials,2017,51(29):4091-4099. doi: 10.1177/0021998317697810
    [23]
    Fu X, Yi D, Tan C, Wang B. Micromechanics analysis of carbon fiber/epoxy microdroplet composite under UV light irradiation by micro-Raman spectroscopy[J]. Polymer Composites,2020,41(6):2154-2168. doi: 10.1002/pc.25528
    [24]
    Feng P F, Song G J, Zhang W J, et al. Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure[J]. Chinese Journal of Polymer Science,2021,39(7):896-905. doi: 10.1007/s10118-021-2549-4
    [25]
    Li B, Zhang F, Jiao M, et al. Carbon fiber/polyetherketoneketone composites. Part I: An ideal and uniform composition via solution-based processing[J]. Polymer Composites,2022,43(5):2803-2811. doi: 10.1002/pc.26577
    [26]
    Luan J, Zhang S, Geng Z, et al. Influence of the addition of lubricant on the properties of poly(ether ether ketone) fibers[J]. Polymer Engineering and Science,2013,53(10):2254-2260. doi: 10.1002/pen.23613
    [27]
    Li Y, Zhao Y, Liu T, et al. Development of a high-performance poly(ether ether ketone) copolymer with extremely low melt viscosity[J]. High Performance Polymers,2018,30(3):267-273. doi: 10.1177/0954008317690794
    [28]
    Liu W, Zhang S, Hao L, et al. Interfacial shear strength in carbon fiber-reinforced poly(phthalazinone ether ketone) composites[J]. Polymer Composites,2013,34(11):1921-1926. doi: 10.1002/pc.22599
    [29]
    Chen G, Mohanty A K, Misra M. Progress in research and applications of polyphenylene sulfide blends and composites with carbons[J]. Composites Part B,2021,209:108553. doi: 10.1016/j.compositesb.2020.108553
    [30]
    Tencé-Girault S, Quibel J, Cherri A, et al. Quantitative structural study of cold-crystallized PEKK[J]. ACS Applied Polymer Materials,2021,3(4):1795-1808. doi: 10.1021/acsapm.0c01380
    [31]
    Wang Y, Beard J D, Evans K E, et al. Unusual crystalline morphology of poly aryl ether ketones (PAEKs)[J]. RSC Advances,2016,6(4):3198-3209. doi: 10.1039/C5RA17110E
    [32]
    Beehag A, Ye L. Role of cooling pressure on interlaminar fracture properties of commingled CF/PEEK composites[J]. Composites Part A,1996,27(3):175-182. doi: 10.1016/1359-835X(95)00027-Y
    [33]
    Hassan E A M, Ge D, Zhu S, et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites Part A,2019,127:105613. doi: 10.1016/j.compositesa.2019.105613
    [34]
    Gardner K H, Hsiao B S, Matheson R R, et al. Structure, crystallization and morphology of poly (aryl ether ketone ketone)[J]. Polymer,1992,33(12):2483-2495. doi: 10.1016/0032-3861(92)91128-O
    [35]
    Gardner K H, Hsiao B S, Faron K L. Polymorphism in poly(aryl ether ketone)s[J]. Polymer,1994,35(11):2290-2295. doi: 10.1016/0032-3861(94)90763-3
    [36]
    Zhang X H, Jiao M X, Wang X, et al. Preheat compression molding for polyetherketoneketone: Effect of molecular mobility[J]. Chinese Journal of Polymer Science,2022,40(2):175-184. doi: 10.1007/s10118-021-2649-1
    [37]
    Kumar S, Anderson D P, Adams W W. Crystallization and morphology of poly(aryl-ether-ether-ketone)[J]. Polymer,1986,27(3):329-336. doi: 10.1016/0032-3861(86)90145-X
    [38]
    Lustiger A. Morphological aspects of the interface in the PEEK-carbon fiber system[J]. Polymer Composites,1992,13(5):408-412. doi: 10.1002/pc.750130511
    [39]
    Gao S L, Kim J K. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion[J]. Composites Part A,2000,31(6):517-530. doi: 10.1016/S1359-835X(00)00009-9
    [40]
    Pérez-Martín H, Mackenzie P, Baidak A, et al. Crystallinity studies of PEKK and carbon fibre/PEKK composites: A review[J]. Composites Part B,2021,223:109127. doi: 10.1016/j.compositesb.2021.109127
    [41]
    Pérez-Martín H, Mackenzie P, Baidak A, et al. Crystallisation behaviour and morphological studies of PEKK and carbon fibre/PEKK composites[J]. Composites Part A,2022,159:106992. doi: 10.1016/j.compositesa.2022.106992
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(369) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return