Volume 38 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
YANG Ping-jun, LI Tie-hu, LI Hao, DANG A-lei, YUAN Lei. Progress in the graphitization and applications of modified resin carbons. New Carbon Mater., 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2
Citation: YANG Ping-jun, LI Tie-hu, LI Hao, DANG A-lei, YUAN Lei. Progress in the graphitization and applications of modified resin carbons. New Carbon Mater., 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2

Progress in the graphitization and applications of modified resin carbons

doi: 10.1016/S1872-5805(23)60715-2
Funds:  National Natural Science Foundation of China (51872235), Key Industrial Chain Project of Shaanxi Province (2020ZDLGY11-04), Fundamental Research Funds for the Central Universities (3102021TS0405).
More Information
  • Corresponding author: LI Tie-hu, Professor. E-mail:litiehu@nwpu.edu.cn; LI Hao, Lecturer. E-mail: lihao@nwpu.edu.cn; DANG A-lei, Associate Professor. E-mail: dangalei@nwpu.edu.cn
  • Received Date: 2022-11-07
  • Rev Recd Date: 2022-11-25
  • Available Online: 2022-11-29
  • Publish Date: 2023-01-06
  • Resin carbons have favorable mechanical, electrical and thermal properties, and are widely used as structural and functional materials in aviation, aerospace and energy storage, etc. The inherent molecular structures of resins make their graphitization difficult, which greatly limits wide applications. Research progress on the graphitization and applications of resin carbons in recent years are reviewed. Their graphitized carbon content can be increased and their graphitization temperature reduced by adding catalysts, carbon nanomaterials and easily graphitized co-carbonization agents. Most studies have been devoted to increasing their graphitized carbon content using catalysts and carbon nanomaterials. The degree of graphitization of resin carbons at temperatures below 1400 °C can reach 74% by adding a catalyst, and above 2000 °C by adding carbon nanomaterials. Co-carbonization agents may increase their degree of graphitization and also their carbon yield. The thermal and electrical conductivities of carbon/carbon composites could be improved by increasing the degree of graphitization of resin carbons, and this would improve the conductivity, rate performance and power density of supercapacitors and secondary batteries. Challenges and research prospects for the graphitization of resin carbons and their applications are discussed.
  • loading
  • [1]
    Yin X M, Han L Y, Liu H M, et al. Recent progress in 1D nanostructures reinforced carbon/ carbon composites[J]. Advanced Function Materials,2022,32:2204965. doi: 10.1002/adfm.202204965
    [2]
    Zhang C, Liu H, Zhou Y, et al. The effect of high temperature heat treatment on the tribological property of a carbon fiber/pyrolytic carbon /silicon carbide composite using polycarbosilane[J]. Ceramics International,2020,46(4):4493-4501. doi: 10.1016/j.ceramint.2019.10.176
    [3]
    Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [4]
    Kubota K, Shimadzu S, Yabuuchi N, et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium Insertion[J]. Chemistry of Materials,2020,32(7):2961-2977. doi: 10.1021/acs.chemmater.9b05235
    [5]
    Liu S, Chevali V S, Xu Z, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B:Engineering,2018,136:197-214. doi: 10.1016/j.compositesb.2017.08.020
    [6]
    Sun Y, Peng Y, Zhang Y. A Study on the synthesis, curing behavior and flame retardance of a novel flame retardant curing agent for epoxy resin[J]. Polymers,2022,14(2):245. doi: 10.3390/polym14020245
    [7]
    Song P, Ma Z, Qiu H, et al. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures[J]. Nano-Micro Lett,2022(003):014.
    [8]
    Yun J, Chen L, Zhao H, et al. Boric acid as a coupling agent for preparation of phenolic resin containing boron and silicon with enhanced char yield[J]. Macromolecular Rapid Communications,2019,40(17):1800702. doi: 10.1002/marc.201800702
    [9]
    Lu X F, Peng X, Chen J, et al. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature[J]. Corrosion Science,2012,55:20-25.
    [10]
    Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon,2014,68:413-425. doi: 10.1016/j.carbon.2013.11.018
    [11]
    陈鸯飞. 高成炭率酚醛树脂的制备及其在C/C复合材料中的应用[D],.湖南大学, 2013.

    Chen Y . Research on preparation of high char yield PF resin and its applications in C/C composite material[D]. Hunan University, 2013.
    [12]
    Idesaki A, Yamamoto S, Sugimoto M, et al. Formation of Fe nanoparticles by ion implantation technique for catalytic graphitization of a phenolic resin[J]. Quantum Beam Science,2020,4(1):11. doi: 10.3390/qubs4010011
    [13]
    Renda C G, Contreras Medrano C P, Costa L J D, et al. Role of ferrocene-derived iron species in the catalytic graphitization of novolak resins[J]. Journal of Materials Science,2021,56(2):1298-1311. doi: 10.1007/s10853-020-05312-z
    [14]
    Renda C G, Bertholdo R, Venâncio T, et al. Influence of the mixing process on the graphitization of phenolic resins[J]. Ceramics International,2019,45(9):12196-12204. doi: 10.1016/j.ceramint.2019.03.124
    [15]
    Bitencourt C S, Luz A P, Pagliosa C, et al. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder[J]. Ceramics International,2015,41(10):13320-13330. doi: 10.1016/j.ceramint.2015.07.115
    [16]
    Darban S, Kakroudi M G, Vandchali M B, et al. Characterization of Ni-doped pyrolyzed phenolic resin and its addition to the Al2O3-C refractories[J]. Ceramics International,2020,46(13):20954-20962. doi: 10.1016/j.ceramint.2020.05.153
    [17]
    Ren Q, He L, Hu S, et al. Formation of highly graphitic char derived from phenolic resin carbonization by Ni-Zn-B alloy[J]. Environmental Science and Pollution Research,2020,27(18):22639-22647. doi: 10.1007/s11356-020-08459-z
    [18]
    Rastegar H, Mansorizadeh E. In situ formed nano-Ni catalytic effect on graphitization of phenolic resin (thermodynamic and microstructure investigation)[J]. Carbon Letters,2022:1-14.
    [19]
    Chen Y, Dong J, Qiu L, et al. A catalytic etching-wetting- dewetting mechanism in the formation of hollow graphitic carbon fiber[J]. Chem,2017,2(2):299-310. doi: 10.1016/j.chempr.2017.01.005
    [20]
    Ma C, Cao E, Li J, et al. Synthesis of mesoporous ribbon- shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes[J]. Electrochimica Acta,2018,292:364-373. doi: 10.1016/j.electacta.2018.07.135
    [21]
    Wang S, Zhu Y, Xu X, et al. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries[J]. Energy,2017,125:569-575. doi: 10.1016/j.energy.2017.02.155
    [22]
    Dassanayake A C, Gonçalves A A S, Fox J, et al. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,582:123884. doi: 10.1016/j.colsurfa.2019.123884
    [23]
    Talabi S I, Luz A P, Pandolfelli V C, et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons[J]. Materials Chemistry and Physics,2018,212:113-121. doi: 10.1016/j.matchemphys.2018.03.029
    [24]
    Chandran M S, Sunitha K, Gayathri D S, et al. Boron-containing phenolic-siloxane hybrid polymers through facile click chemistry route[J]. Journal of Materials Science,2018,53(4):2497-2510. doi: 10.1007/s10853-017-1737-7
    [25]
    Chen L, Fang T, Song C, et al. Catalytic graphitization of boron on the fabrication of high-performance carbon papers for gas diffusion layers in PEMFCs[J]. Catalysis Communications,2021,157:106332. doi: 10.1016/j.catcom.2021.106332
    [26]
    Chen J, Xiong X, Xiao P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites[J]. Solid state sciences,2009,11(11):1890-1893. doi: 10.1016/j.solidstatesciences.2009.07.019
    [27]
    Liang F, Li N, Li X K, et al. Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons[J]. New Carbon Materials,2012,27(4):283-287. doi: 10.1016/S1872-5805(12)60018-3
    [28]
    Yang G, Wang Y, Zhou S, et al. Graphene/phenolic resin-based porous carbon composites with improved conductivity prepared via in situ polymerization in graphene hydrogels[J]. Journal of Materials Science,2019,54(3):2222-2230. doi: 10.1007/s10853-018-2983-z
    [29]
    Alizadeh O, Hosseini H M, Pourjavadi A, et al. Effect of graphene oxide on morphological and structural properties of graphene reinforced novolac-derived carbon aerogels: A modified Quasi-Percolation Model[J]. Ceramics International,2020,46(8):11179-11188. doi: 10.1016/j.ceramint.2020.01.139
    [30]
    Yi S, Chen J, Li H, et al. Effect of graphite oxide on graphitization of furan resin carbon[J]. Carbon,2010,48(3):926-928. doi: 10.1016/j.carbon.2009.11.027
    [31]
    Yan D, Li S H, Guo L P, et al. Hard@ soft integrated morning glory like porous carbon as a cathode for a high-energy lithium ion capacitor[J]. ACS applied materials & interfaces,2018,10(50):43946-43952.
    [32]
    金钊. 萘沥青-C9树脂共热聚调制改性中间相沥青及其炭材料[D]. 2020, 武汉科技大学.

    Jin Z. Preparation of modified mesophase pitch byco-thermopolymerization of naphthalenepitch&C9 resinand its derived carbon materials[D]. 2020, WuhanUniversity of Science and Technology.
    [33]
    刘丙杨. 童亭煤密中质组制备针状焦研究 [M]. 2021, 中国矿业大学.

    Liu B Y. Preparation of Needle Coke By Dense Medium Component from Tongting Coal[M]. 2021, China University of Mining and Technology.
    [34]
    王玉伟. 煤沥青基钠离子电池负极材料制备与性能研究 [D]. 2018, 大连理工大学.

    Wang Y W. Synthesis and electrochemical properties of coal tar pitch-based anode materials for sodium-ion Batteries [D]. 2018, Dalian University of Technology.
    [35]
    Muhammed F, Lavaggi T, Advani S, et al. Influence of material and process parameters on microstructure evolution during the fabrication of carbon–carbon composites: a review[J]. Journal of Materials Science,2021,56(32):17877-17914. doi: 10.1007/s10853-021-06401-3
    [36]
    马媛媛, 杨禹, 吕春祥, 等. 氧化石墨烯和石墨相氮化碳增强炭/酚醛复合材料界面热烧蚀性能对比[J]. 新型炭材料,2019,34(1):29-37. doi: 10.19869/j.ncm.1007-8827.2019.01.003

    MA Y Y, YANG Y, YU C X, etc. A comparative study of the ablation properties of carbon fiber-reinforced phenolic resin composites with a matrix modified with graphene oxide and graphitic carbon nitride[J]. New Carbon Materials,2019,34(1):29-37. doi: 10.19869/j.ncm.1007-8827.2019.01.003
    [37]
    查庆芳, 郭燕生, 张玉贞, 等. 沥青树脂和炭纤维的复合性能[J]. 新型炭材料,2007,22(2):109-114.

    Cha Q F, Guo Y S, Zhang Y Z, etc. Composite properties of pitch resin and carbon fiber[J]. New Carbon Materials,2007,22(2):109-114.
    [38]
    邓海亮, 郑金煌, 曹军宁, 等. 稀土镧催化热解二甲苯制备炭/炭复合材料的烧蚀与氧化性能[J]. 新型炭材料,2018,33(5):434-441. doi: 10.19869/j.ncm.1007-8827.2018.05.003

    Deng H L, Zheng J H, Chao J N, etc. Ablation and Oxidation resistance properties of C/C composites densified by xylene pyrocarbon using LaCl3 as a catalyst and resin carbon[J]. New Carbon Materials,2018,33(5):434-441. doi: 10.19869/j.ncm.1007-8827.2018.05.003
    [39]
    Irisawa T, Nishimura K, Yamamoto T, et al. Stress graphitization behavior of C/C composites fabricated from milled short pitch-based carbon fibers and their electrical properties[J]. Journal of Fiber Science and Technology,2012,77(11):296-304.
    [40]
    Liu X, Deng H, Zheng J, et al. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. New Carbon Materials,2020,35(5):576-584. doi: 10.1016/S1872-5805(20)60511-X
    [41]
    Dong Y, Lin H, Zhou D, et al. Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J]. Electrochimica Acta,2015,159:116-123. doi: 10.1016/j.electacta.2015.01.152
    [42]
    Tian Y, Song Y, Tang Z H, et al. Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor[J]. Journal of Power Sources,2008:675-681.
    [43]
    Yang Y, Zhang F, Wei K Y, et al. Porous carbon microspheres with controlled porosity and graphitization degree for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry,2022:1572-6657.
    [44]
    Chang B, Yang B, Guo Y, et al. Preparation and enhanced supercapacitance performance of porous carbon spheres with a high degree of graphitization[J]. Rsc Advances,2014,5(3):2088-2095.
    [45]
    Xu H. Thermal conversion of an anion-exchange resin: a new catalytic-graphitization route to prepare porous carbons with a high graphitization degree for supercapacitors[J]. Rsc Advances, 2016, 6(113).
    [46]
    Pang X, Zhou T, Jiang Q T, et al. Porous graphitic carbon fibers for fast-charging supercapacitor applications[J]. Energy Technol, 2020.
    [47]
    Zhang H, Zhang W, Huang F. Graphene inducing graphitization: Towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage[J]. Chemical Engineering Journal,2022,434:134503. doi: 10.1016/j.cej.2022.134503
    [48]
    Song D P, Li W, Park J, et al. Millisecond photothermal carbonization for in-situ fabrication of mesoporous graphitic carbon nanocomposite electrode films[J]. Carbon,2020,174:439-444.
    [49]
    Shi W, Zhang Y, Tian Z Q, et al. Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material[J]. Journal of power sources,2018,398(SEP.15):149-158.
    [50]
    Xi Y, Wang Y, Yang D, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019.
    [51]
    Jin Z, Cui Z, Long X, et al. Understanding the correlation between microstructure and electrochemical performance of hybridized pitch cokes for lithium-ion battery through tailoring their evolutional structures from ordered soft carbon to disordered hard carbon[J]. Journal of Alloys and Compounds,2021,887:161357. doi: 10.1016/j.jallcom.2021.161357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(1054) PDF Downloads(288) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return