Volume 38 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LIU Yu-hong, MA Zhao-kun, HE Yan, WANG Yue, ZHANG Xing-wei, SONG Huai-he, LI Cui-xia. A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals. New Carbon Mater., 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X
Citation: LIU Yu-hong, MA Zhao-kun, HE Yan, WANG Yue, ZHANG Xing-wei, SONG Huai-he, LI Cui-xia. A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals. New Carbon Mater., 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X

A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals

doi: 10.1016/S1872-5805(23)60719-X
More Information
  • Author Bio:

    刘昱宏,硕士研究生. E-mail:15011235878@163.com

  • Corresponding author: MA Zhao-kun, Professor. E-mail: mazk@mail.buct.edu.cn
  • Received Date: 2022-09-27
  • Rev Recd Date: 2022-12-04
  • Available Online: 2022-12-15
  • Publish Date: 2023-01-06
  • Fibrous graphite materials are highly attractive due to their unique morphologies, high degree of orientation of their graphite microcrystallites, extremely good mechanical and conductive properties, fascinating growth mechanisms, diverse preparation methods and potential applications. This review summarizes the preparation methods, Raman spectra and the growth mechanisms of graphite whiskers, columnar carbons with cone-shaped top cones, and needle- and rod-like polyhedral crystals, and their optical, electrical and magnetic properties and applications are outlined.
  • loading
  • [1]
    Chen M Q, Guan R, Yang S. Hybrids of fullerenes and 2D nanomaterials[J]. Advanced Science,2019,6(1):1800941. doi: 10.1002/advs.201800941
    [2]
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [3]
    Ma J, Yuan J, Ming W, et al. Non-traditional processing of carbon nanotubes: A review[J]. Alexandria Engineering Journal,2022,61(1):597-617. doi: 10.1016/j.aej.2021.06.041
    [4]
    Ahmad M, Silva S R P. Low temperature growth of carbon nanotubes – A review[J]. Carbon,2020,158:24-44. doi: 10.1016/j.carbon.2019.11.061
    [5]
    Sekiya R, Haino T. Nanographene – A scaffold of two-dimensional materials[J]. The Chemical Record,2022,22(3):e202100257. doi: 10.1002/tcr.202100257
    [6]
    Wu X, Mu F W, Zhao H Y. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications[J]. Journal of Materials Science & Technology,2020,55:16-34. doi: 10.1016/j.jmst.2019.05.063
    [7]
    Tsuzuk T. Conical spiral structure and laminar cleavage of graphite[J]. Journal of the Physical Society of Japan,1957,12(7):778-788. doi: 10.1143/JPSJ.12.778
    [8]
    Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications[J]. Carbon,2001,39(9):1287-1297. doi: 10.1016/S0008-6223(00)00295-5
    [9]
    Ishioka M, Okada T, Matsubara K, et al. Formation of vapor-grown carbon fibers in CO-CO2-H2 mixtures, II Influence of catalyst[J]. Carbon,1992,30(6):865-868. doi: 10.1016/0008-6223(92)90008-K
    [10]
    Benissad F, Gadelle P, Coulon M, et al. Formation de fibres de carbone a partir du methane: I Croissance catalytique et epaississement pyrolytique[J]. Carbon,1988,26(1):61-69. doi: 10.1016/0008-6223(88)90010-3
    [11]
    Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition[J]. Journal of Crystal Growth,1976,32(3):335-349. doi: 10.1016/0022-0248(76)90115-9
    [12]
    Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel,2019,239(1):230-238. doi: 10.1016/j.fuel.2018.11.010
    [13]
    Pełech I, Narkiewicz U, Kaczmarek A, et al. Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts[J]. Polish Journal of Chemical Technology,2014,16(1):117-122. doi: 10.2478/pjct-2014-0020
    [14]
    Tibbetts G G. Vapor-grown carbon fibers: status and prospects[J]. Carbon,1989,27(5):745-747. doi: 10.1016/0008-6223(89)90208-X
    [15]
    Tibbetts G G, Doll G L, Gorkiewicz D W, et al. Physical properties of vapor-grown carbon fibers[J]. Carbon,1993,31(7):1039-1047. doi: 10.1016/0008-6223(93)90054-E
    [16]
    Tibbetts G G, Meisner G P, Olk C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers[J]. Carbon,2001,39(15):2291-2301. doi: 10.1016/S0008-6223(01)00051-3
    [17]
    Serf P, Figueiredo J L. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon,1997,35(5):675-683. doi: 10.1016/S0008-6223(97)00023-7
    [18]
    Jacobsen R L, Tritt T M, Guth J R, et al. Mechanical properties of vapor-grown carbon fiber[J]. Carbon,1995,33(9):1217-1221. doi: 10.1016/0008-6223(95)00057-K
    [19]
    Amelinckx S, Luyten W, Krekels T, et al. Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”?[J]. Journal of Crystal Growth,1992,121(4):543-558. doi: 10.1016/0022-0248(92)90561-V
    [20]
    Ge M, Sattler K. Observation of fullerene cones[J]. Chemical Physics Letters,1994,220(3-5):192-196. doi: 10.1016/0009-2614(94)00167-7
    [21]
    Krishnan A, Dujardin E, Treacy M M J, et al. Graphitic cones and the nucleation of curved carbon surfaces[J]. Nature,1997,388:451-454. doi: 10.1038/41284
    [22]
    Dong J, Shen W, Zhang B, et al. New origin of spirals and new growth process of carbon whiskers[J]. Carbon,2001,39(15):2325-2333. doi: 10.1016/S0008-6223(01)00064-1
    [23]
    Saito Y, Arima T. Features of vapor-grown cone-shaped graphitic whiskers deposited in the cavities of wood cells[J]. Carbon,2007,45(2):248-255. doi: 10.1016/j.carbon.2006.10.002
    [24]
    Wisner C A. Graphite aerogels and the formation mechanism of unusual micron-size rod and helical structures[D]. Missouri University of Science and Technology, 2014.
    [25]
    Melvin G J H, Wang Z, Morimoto S, et al. Graphite whiskers derived from waste coffee grounds treated at high temperature[J]. Global Challenges,2019,3(8):1800107. doi: 10.1002/gch2.201800107
    [26]
    Liu Y H, Liu X P, Ma Z K, et al. A new preparation method of graphite cones from polycyclic aromatic hydrocarbons/polyimide composite carbon fibers[J]. Carbon,2022,196:128-135. doi: 10.1016/j.carbon.2022.04.069
    [27]
    Song X, Liu Y, Zhu J. Synthesis of polyhedral graphite in a forced flow arc discharge[J]. Materials Letters,2007,61(26):4781-4783. doi: 10.1016/j.matlet.2007.03.032
    [28]
    Okuno H, Palnichenko A, Despres J F, et al. Synthesis of graphite polyhedral crystals using a combustion flame method[J]. Carbon,2005,43(4):692-697. doi: 10.1016/j.carbon.2004.10.033
    [29]
    Gogotsi Y, Dimovski S, Libera J A. Conical crystals of graphite[J]. Carbon,2002,40(12):2263-2267. doi: 10.1016/S0008-6223(02)00067-2
    [30]
    Voss E, Vigolo B, Medjahdi G, et al. Covalent functionalization of polyhedral graphitic particles synthesized by arc discharge from graphite†[J]. Physical Chemistry Chemical Physics,2017,19(7):5405-5410. doi: 10.1039/C6CP08568G
    [31]
    Pappis J, Blum S L. Properties of pyrolytic graphite[J]. Journal of the American Ceramic Society,1961,44(12):592-597. doi: 10.1111/j.1151-2916.1961.tb11664.x
    [32]
    Vetrivendan E, Hareesh R, Ningshen S. Synthesis and characterization of chemical vapour deposited pyrolytic graphite[J]. Thin Solid Films,2022,749:139180. doi: 10.1016/j.tsf.2022.139180
    [33]
    Shoyama K, Würthner F. Synthesis of a carbon nanocone by cascade annulation[J]. Journal of the American Chemical Society,2019,141(33):13008-13012. doi: 10.1021/jacs.9b06617
    [34]
    Raj A, Mokhalingam A, Gupta S S. Instabilities in carbon nanocone stacks[J]. Carbon,2018,127:404-411. doi: 10.1016/j.carbon.2017.11.023
    [35]
    Han X, Xu F, Duan S, et al. A novel super-elastic carbon nanofiber with cup-stacked carbon nanocones and a screw dislocation[J]. Carbon,2019,154:98-107. doi: 10.1016/j.carbon.2019.07.084
    [36]
    Charlier J C, Rignanese G M. Electronic structure of carbon nanocones[J]. Physical Review Letters,2001,86(26):5970-5973. doi: 10.1103/PhysRevLett.86.5970
    [37]
    Cox B J, Hill J M. Carbon nanocones with curvature effects close to the vertex[J]. Nanomaterials,2018,8(8):624. doi: 10.3390/nano8080624
    [38]
    Feng Y L, Yu L J. Nanotechnology, An investigation of the characteristics of natural nanoscale graphite cones[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):7021-7025. doi: 10.1166/jnn.2017.14415
    [39]
    Jaszczak J A, Robinson G W, Dimovski S, et al. Naturally occurring graphite cones[J]. Carbon,2003,41(11):2085-2092. doi: 10.1016/S0008-6223(03)00214-8
    [40]
    Bacon R. Growth, structure, and properties of graphite whiskers[J]. Journal of Applied Physics,1960,31(2):283-290. doi: 10.1063/1.1735559
    [41]
    Saito Y, Arima T. Cone structure of hexagonal carbon sheets stacked in wood cell lumen[J]. Journal of Wood Science,2004,50(1):87-92. doi: 10.1007/s10086-003-0541-y
    [42]
    Saito Y, Arima T. Growth of cone-shaped carbon material inside the cell lumen by heat treatment of wood charcoal[J]. Journal of Wood Science,2002,48(5):451-454. doi: 10.1007/BF00770709
    [43]
    Fries M, Steele A. Graphite whiskers in CV3 meteorites[J]. Science,2008,320(5872):91-93. doi: 10.1126/science.1153578
    [44]
    Saito Y, Nishio-Hamane D. Helical superstructure of continuum graphene cone uncovered by TEM analysis of herringbone-striped pattern in graphitic whiskers[J]. Journal of Crystal Growth,2016,451:27-32. doi: 10.1016/0022-0248(92)90561-v
    [45]
    Zhang G, Jiang X, Wang E. Tubular graphite cones[J]. Science,2003,300(5618):472-474. doi: 10.1126/science.1082264
    [46]
    Zhu Z Z, Chen Z C, Yao Y R, et al. Rational synthesis of an atomically precise carboncone under mild conditions[J]. Science Advances,2019,5(8):eaaw0982. doi: 10.1126/sciadv.aaw0982
    [47]
    Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro-trees[J]. Nature,2000,404:243. doi: 10.1038/35005161
    [48]
    Saito Y, Yoshikawa T, Inagaki M, et al. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge[J]. Chemical Physics Letters,1993,204(3-4):277-282. doi: 10.1016/0009-2614(93)90009-P
    [49]
    Koshio A, Katagiri Y, Yamamoto M, et al. Formation of polyhedral graphite particles by high-density carbon arc discharge with ethanol vapor[J]. Vacuum,2018,156:165-171. doi: 10.1016/j.vacuum.2018.07.030
    [50]
    Gogotsi Y, Libera J A, Kalashnikov N, et al. Graphite polyhedral crystals[J]. Science,2000,290(5490):317-320. doi: 10.1126/science.290.5490.317
    [51]
    Lieberman M L, Hills C R, Miglionico C J. Growth of graphite filaments[J]. Carbon,1971,9(5):633-635. doi: 10.1016/0008-6223(71)90085-6
    [52]
    Steele A, McCubbin F M, Fries M, et al. Graphite in an Apollo 17 impact melt breccia[J]. Science,2010,329(5987):51-51. doi: 10.1126/science.1190541
    [53]
    Nuth J A, Kimura Y, Lucas C, et al. The formation of graphite whiskers in the primitive solar nebula[J]. The Astrophysical Journal Letters,2010,710(1):98-101. doi: 10.1088/2041-8205/710/1/L98
    [54]
    Wickramasinghe N C, Wallis D H. Far-infrared contribution to interstellar extinction from graphite whiskers[J]. Astrophysics and Space Science,1996,240(1):157-160. doi: 10.1007/BF00640203
    [55]
    Hoyle F, Narlikar J V, Wickramasinghe N C. The radiation of microwaves and infrared by slender graphite needles[J]. Astrophysics and Space Science,1984,103(2):371-377. doi: 10.1007/BF00653751
    [56]
    Aguirre A N. Dust versus cosmic acceleration[J]. The Astrophysical Journal,1999,512(1):19-22. doi: 10.1086/311862
    [57]
    Aguirre A N. Intergalactic dust and observations of type Ia supernovae[J]. The Astrophysical Journal,1999,525(2):583-593. doi: 10.1086/307945
    [58]
    Baker C. An anomalous structure in graphite whiskers[J]. Carbon,1969,7(2):293-294. doi: 10.1016/0008-6223(69)90112-2
    [59]
    Patel A R, Deshapande S V. Whisker growth in natural graphite[J]. Carbon,1970,8(2):242-244. doi: 10.1016/0008-6223(70)90119-3
    [60]
    Davis W R, Slawson R J, Rigby G R. An unusual form of carbon[J]. Nature,1953,171:756. doi: 10.1038/171756a0
    [61]
    Hillert M, Lange N. The structure of graphite filaments[J]. Zeitschrift für Kristallographie - Crystalline Materials,1959,111:24-34. doi: 10.1524/zkri.1959.111.16.24
    [62]
    Tibbetts G G. Why are carbon filaments tubular?[J]. Journal of Crystal Growth,1984,66(3):632-638. doi: 10.1016/0022-0248(84)90163-5
    [63]
    Baker R T K. Catalytic growth of carbon filaments[J]. Carbon,1989,27(3):315-323. doi: 10.1016/0008-6223(89)90062-6
    [64]
    Zhang Q, Yang F J, Zhao J K, et al. Carbon rods with hexa-branched structure and their formation mechanism[J]. Materials Letters,2020,262(1):127198. doi: 10.1016/j.matlet.2019.127198
    [65]
    Liu Y, Hu W, Wang X, et al. Carbon nanorods[J]. Chemical Physics Letters,2000,331(1):31-34. doi: 10.1016/S0009-2614(00)01143-X
    [66]
    Wang Z, Ogata H, Morimoto S, et al. High-temperature-induced growth of graphite whiskers from fullerene waste soot[J]. Carbon,2015,90:154-159. doi: 10.1016/j.carbon.2015.04.017
    [67]
    Jagtap P, Jain N, Chason E. Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth[J]. Scripta Materialia,2020,182:43-47. doi: 10.1016/j.scriptamat.2020.02.036
    [68]
    Hagiwara S, Takahashi H. Whisker-like graphite grown by heat treatment of carbon black[J]. Carbon,1976,14(1):86-88. doi: 10.1016/0008-6223(76)90089-0
    [69]
    Double D D, Hellawell A. Cone-helix growth forms of graphite[J]. Acta Metallurgica,1974,22(4):481-487. doi: 10.1016/0001-6160(74)90101-1
    [70]
    Krishnan A, Dujardin E, Bisher M E, et al. Graphitic cones[J]. Microscopy and Microanalysis,1997,3(S2):437-438. doi: 10.1017/S1431927600009077
    [71]
    Liu X, Ji W, Zhang Y, et al. The morphology and electrical resistance of long oriented vapor-grown carbon fibers synthesized from coal pitch[J]. Carbon,2008,46(1):154-158. doi: 10.1016/j.carbon.2007.11.010
    [72]
    Figueiredo J L, Serp P, Nysten B, et al. Surface treatments of vapor-grown carbon fibers produced on a substrate: Part II: Atomic force microscopy[J]. Carbon,1999,37(11):1809-1816. doi: 10.1016/S0008-6223(99)00055-X
    [73]
    Haanstra H B, Knippenberg W F, Verspui G. Columnar growth of carbon[J]. Journal of Crystal Growth,1972,16(1):71-79. doi: 10.1016/0022-0248(72)90091-7
    [74]
    Wisner C A. Graphite aerogels and the formation mechanism of unusual micron-size rod and helical structures[D]. Dissertations & Theses – Gradworks, 2014.
    [75]
    Tsuzuku T, Komoda T. Conical crystals of graphite[J]. Acta Crystallographica,1956,9(1):90. doi: 10.1107/S0365110X5600019X
    [76]
    Frank F. The influence of dislocations on crystal growth[J]. Discussions of The Faraday Society,1949,5:48-54. doi: 10.1039/df9490500048
    [77]
    Gillot J, Bollmann W, Lux, B. Cristaux de graphite en forme de cigare et a structure conique[J]. Carbon,1968,6(3):381-384. doi: 10.1016/0008-6223(68)90033-X
    [78]
    Vidano R, Fischbach D B. New lines in the Raman spectra of carbons and graphite[J]. Journal of the American Ceramic Society,1978,61(1-2):13-17. doi: 10.1111/j.1151-2916.1978.tb09219.x
    [79]
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53:1126-1130. doi: 10.1063/1.1674108
    [80]
    Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports,2009,473(5-6):51-87. doi: 10.1016/j.physrep.2009.02.003
    [81]
    Lespade P, Al-Jishi R, Dresselhaus M S. Model for Raman scattering from incompletely graphitized carbons[J]. Carbon,1982,20(5):427-431. doi: 10.1016/0008-6223(82)90043-4
    [82]
    Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565-571. doi: 10.1016/0008-6223(88)90157-1
    [83]
    Ferrari A, Robertson J, Tan P, et al. Raman scattering of fibrous graphite: arched edges, polyhedral crystals, whiskers and cones[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2004,362(1824):2289-2310. doi: 10.1098/rsta.2004.1442
    [84]
    Dong J, Shen W, Tatarchuk B. Origin of strong G′ band in Raman spectra of carbon whiskers[J]. Applied Physics Letters,2002,80:3733-3735. doi: 10.1063/1.1481783
    [85]
    Kawashima Y, Katagiri G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite[J]. Physical Review B,1995,52(14):10053-10059. doi: 10.1103/physrevb.52.10053
    [86]
    Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B,1979,20(2):392-401. doi: 10.1103/PhysRevB.20.392
    [87]
    Kroto H W, Heath J R, O’ Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162-163. doi: 10.1038/318162a0
    [88]
    Krätschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon[J]. Nature,1990,347(6291):354-358. doi: 10.1038/347354a0
    [89]
    Tsuzuku T. And the graphitization stress was the origin of the dislocations during the spiral growth process[J]. Journal of the Physical Society of Japan,1960,15:1373-1379. doi: 10.1143/JPSJ.15.1373
    [90]
    Dimovski S and Gogotsi Y. Graphite Whiskers, Cones, and Polyhedral Crystals[M]. Carbon Nanomaterials, 2006, Second Edition. 10.1201/9781420009378. ch4.
    [91]
    Tamura R, Akagi K, Tsukada M, et al. Electronic properties of polygonal defects in graphitic carbon sheets[J]. Physical Review B,1997,56(3):1404-1411. doi: 10.1103/PhysRevB.56.1404
    [92]
    Carroll D L, Redlich P, Ajayan P M, et al. Electronic structure and localized states at carbon nanotube Tips[J]. Physical Review Letters,1997,78(14):2811-2814. doi: 10.1103/PhysRevLett.78.2811
    [93]
    Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes[J]. Physical Review B,1996,53(16):11108-11113. doi: 10.1103/PhysRevB.53.11108
    [94]
    Meng T S, Ma Z K, Zhang X W, et al. Fabrication of high thermal conductivity C/C composites reinforced by graphite films with hexagonal pits[J]. Journal of Materials Science,2022,57:11761-11773. doi: 10.1007/s10853-022-07279-5
    [95]
    Zhao J J, Cai R, Ma Z K, et al. Preparation and properties of C/SiC composites reinforced by high thermal conductivity graphite films[J]. Diamond & Related Materials,2021,116:108376. doi: 10.1016/j.diamond.2021.108376
    [96]
    Zhang X W, Ning S L, Ma Z K, et al. The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities[J]. Carbon,2020,156:499-505. doi: 10.1016/j.carbon.2019.09.085
    [97]
    Zhang X W, Ma Z K, Meng Y C, et al. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. Journal of Analytical and Applied Pyrolysis,2019,140:274-280. doi: 10.1016/j.jaap.2019.04.004
    [98]
    Meng Y C, Ma Z K, Cao R X, et al. Purification of coal tar pitch by a combined thermal condensation and filtration method[J]. New Carbon Materials,2020,35(1):20-25. doi: 10.1016/j.carbon.2020.04.048
    [99]
    Xiao M, Xu H Y, Ma Z K, et al. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers[J]. New Carbon Materials,2019,34(1):20-29. doi: 10.1016/j.carbon.2019.03.058
    [100]
    Li A, Ma Z K, Song H H, et al. Effect of heat treatment temperature on the microstructure and properties of polyimide-based carbon fibers[J]. New Carbon Materials,2014,29(6):461-466. doi: 10.3969/j.issn.1007-8827.2014.06.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article Metrics

    Article Views(653) PDF Downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return