Volume 38 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
ZHAN Chang-zhen, ZENG Xiao-jie, LV Rui-tao, SHEN Yang, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater., 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9
Citation: ZHAN Chang-zhen, ZENG Xiao-jie, LV Rui-tao, SHEN Yang, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism. New Carbon Mater., 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9

Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism

doi: 10.1016/S1872-5805(23)60727-9
More Information
  • Author Bio:

    ZHAN Chang-zhen, Ph.D. E-mail: zhanchangzhen@sina.com

  • Corresponding author: HUANG Zheng-hong, Ph.D, Professor. E-mail: zhhuang@tsinghua.edu.cn
  • Received Date: 2019-04-26
  • Rev Recd Date: 2022-10-25
  • Available Online: 2023-03-01
  • Publish Date: 2023-06-01
  • A lithium-ion capacitor, a combination of a lithium-ion batteries and a supercapacitor, is expected to have the advantages of both a batteries and a capacitor and has attracted worldwide attention in recent years. However, its energy storage is limited due to the electric double-layer capacitance mechanism of the positive electrode. Consequently, to fundamentally improve the performance of the positive electrode material, a novel dual-ion hybrid capacitance energy storage mechanism is proposed. Porous graphitic carbon with a partially graphitized structure and hierarchical porous structure was synthesized by a one-step heat treatment method using potassium/magnesium/iron citrate as precursors. When used as the positive electrode material, the porous graphitic carbon has a dual-ion hybrid capacitance mechanism in an electrolyte produced using a mixture of Li-TFSI (bis(trifluoromethylsulfonyl) amine lithium salt) and BMIm-TFSI (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), which combines electric double-layer capacitance behavior in a lithium-ion capacitor and anion intercalation/de-intercalation behavior in a dual-ion batteries. Two mechanisms were observed in the electrochemical characterization process, and the performance of the porous graphitic carbon was compared to porous carbon and artificial graphite, which indicate that its energy storage performance is significantly better due to the additional plateau capacity contributed by anion intercalation at a high potential and the improved conductivity through the local graphitic regions.
  • loading
  • [1]
    Wang H, Zhu C, Chao D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials,2017,29(46):1702093. doi: 10.1002/adma.201702093
    [2]
    Li B, Zheng J, Zhang H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials,2018,30(17):1705670. doi: 10.1002/adma.201705670
    [3]
    Han D, Zhang J, Weng Z, et al. Two-dimensional materials for lithium/sodium-ion capacitors[J]. Materials Today Energy,2019,11:30-45. doi: 10.1016/j.mtener.2018.10.013
    [4]
    Park C M, Jo Y N, Park J W, et al. Anodic performances of surface-treated natural graphite for lithium ion capacitors[J]. Bulletin of the Korean Chemical Society,2014,35(9):2630-2634. doi: 10.5012/bkcs.2014.35.9.2630
    [5]
    Zhang J, Liu X, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta,2016,187:134-142. doi: 10.1016/j.electacta.2015.11.055
    [6]
    Kim H, Park K Y, Cho M Y, et al. High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon[J]. ChemElectroChem,2014,1(1):125-130. doi: 10.1002/celc.201300186
    [7]
    Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angewandte Chemie International Edition,2015,54(23):6814-6818. doi: 10.1002/anie.201501706
    [8]
    Liang Y, Zhang W, Wu D, et al. Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage[J]. Advanced Materials Interfaces,2018,5(14):1800430. doi: 10.1002/admi.201800430
    [9]
    Xia Q Y, Yang H, Wang M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Advanced Energy Materials,2017,7(22):1701336. doi: 10.1002/aenm.201701336
    [10]
    苏方远, 谢莉婧, 孙国华, 等. 石墨烯在电化学储能过程中理论研究进展[J]. 新型炭材料,2016,31(4):363-377. doi: 10.19869/j.ncm.1007-8827.2016.04.001

    Su F Y, Xie L J, Sun G H, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials,2016,31(4):363-377. doi: 10.19869/j.ncm.1007-8827.2016.04.001
    [11]
    Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry,2009,19(46):8755-8760. doi: 10.1039/b909779a
    [12]
    Han P, Xu G, Han X, et al. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies[J]. Advanced Energy Materials,2018,8(26):1801243. doi: 10.1002/aenm.201801243
    [13]
    Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery[J]. Advanced Energy Materials,2016,6(11):1502588. doi: 10.1002/aenm.201502588
    [14]
    Seel J A, Dahn J R. Electrochemical intercalation of  PF6 into graphite[J]. Journal of The Electrochemical Society,2000,147(3):892-898. doi: 10.1149/1.1393288
    [15]
    Li W H, Ning Q L, Xi X T, et al. Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries[J]. Advanced Materials,2019,31(4):1804766. doi: 10.1002/adma.201804766
    [16]
    Wang M, Tang Y. A review on the features and progress of dual-ion batteries[J]. Advanced Energy Materials,2018,8(19):1703320. doi: 10.1002/aenm.201703320
    [17]
    Zhou Q Q, Chen X Y, Wang B. An activation-free protocol for preparing porous carbon from calcium citrate and the capacitive performance[J]. Microporous and Mesoporous Materials,2012,158:155-161. doi: 10.1016/j.micromeso.2012.03.031
    [18]
    Yu X, Zhao J, Lv R, et al. Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(36):18400-18405. doi: 10.1039/C5TA05374A
    [19]
    Yu X, Deng J, Zhan C, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta,2017,228:76-81. doi: 10.1016/j.electacta.2017.01.058
    [20]
    Liu H, Li S, Yang H, et al. Stepwise crosslinking: A facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers[J]. Advanced Materials,2017,29(27):1700723. doi: 10.1002/adma.201700723
    [21]
    Chang B B, Guo Y Z, Li Y C, et al. Graphitized hierarchical porous carbon nanospheres: Simultaneous activation/graphitization and superior supercapacitance performance[J]. Journal of Materials Chemistry A,2015,3(18):9565-9577. doi: 10.1039/C5TA00867K
    [22]
    Liang Q, Ye L, Huang Z H, et al. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale,2014,6(22):13831-13837. doi: 10.1039/C4NR04541F
    [23]
    Li Z Q, Lu C J, Xia Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038
    [24]
    刘树和, 英哲, 王作明, 等. 天然石墨球-热解炭核壳结构的制备及电化学性能研究[J]. 新型炭材料,2008,23(1):30-36. doi: 10.1016/S1872-5805(08)60010-4

    Liu S H, Zhe Y, Wang Z M, et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New carbon materials,2008,23(1):30-36. doi: 10.1016/S1872-5805(08)60010-4
    [25]
    Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports,2013,3:2477. doi: 10.1038/srep02477
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(342) PDF Downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return