Volume 38 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Xiao-fang, YAO Ting-ting, LIU Yu-ting, WU Gang-ping. Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant. New Carbon Mater., 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0
Citation: ZHANG Xiao-fang, YAO Ting-ting, LIU Yu-ting, WU Gang-ping. Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant. New Carbon Mater., 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0

Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant

doi: 10.1016/S1872-5805(23)60728-0
Funds:  Major Science and Technology Projects of Shanxi Province (20181101020), Independent Innovation Fund Project of Shanxi Institute of Coal Chemistry-Basic Research Project Supported by ICC CAS (SCJC-HN-2022-15)
More Information
  • Author Bio:

    张晓芳,博士研究生. E-mail:zhangxiaofang@sxicc.ac.cn

  • Corresponding author: WU Gang-ping, Professor. E-mail: wgp@sxicc.ac.cn
  • Received Date: 2019-11-06
  • Rev Recd Date: 2020-07-06
  • Available Online: 2023-03-13
  • Publish Date: 2023-10-01
  • The surface of carbon fibers (CFs) was modified by a surfactant (ferrocenemethyl)dodecyldimethylammonium bromide (FDDA) to enhance the interfacial ashesion between the CFs and surrounding matrix. Results showed that it could be electrochemically desorbed by a potentiostatic electro-oxidation method. The FDDA adsorption isotherm was attributed to the formation of multi-molecular layers mainly by non-electrostatic interactions. The adsorption and desorption of FDDA on the CFs have little effect on their tensile strength. The effects of FDDA modification on the interfacial properties of CF/epoxy composites were evaluated by a single-filament fragmentation test. Compared with the un-modified CFs, the FDDA-modified ones had significantly improved interfacial adhesion properties in the composites. This method provides a potential approach for preparing recyclable CF/resin composites.
  • loading
  • [1]
    Yan H, Hu D Q, Dai Y F, et al. Self-assembly of carbon nanomaterials onto carbon fiber to improve the interfacial properties of epoxy composites[J]. Journal of Materials Science and Technology,2023,161:44-49. doi: 10.1016/j.jmst.2023.04.004
    [2]
    Dong Z J, Sun B, Zhu H, ey al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials,2021,36(5):873-896.
    [3]
    Zeng N, Liu H Y, Gao J F, et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B:Engineering,2019,171:320-328. doi: 10.1016/j.compositesb.2019.05.004
    [4]
    Li C, Dong Y, Yuan X M, et al. Two-step method to realize continuous multi-wall carbon nanotube grafted on the fibers to improve the interface of carbon fibers/epoxy resin composites based on the Diels-Alder reaction[J]. Carbon,2023,212:118131. doi: 10.1016/j.carbon.2023.118131
    [5]
    Li G, Yuan H, Mou J, et al. Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes[J]. Composites Communications,2022,29:101043. doi: 10.1016/j.coco.2021.101043
    [6]
    Yao X, Gao X, Jiang J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B:Engineering,2018,13:170-177.
    [7]
    Li S X, Yang C L, Yao L L, et al. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites[J]. Carbon,2023,209:118028. doi: 10.1016/j.carbon.2023.118028
    [8]
    Zhang, W, Deng X, Sui G, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon,2019,145:629-639. doi: 10.1016/j.carbon.2019.01.063
    [9]
    Osbeck S, Bradley R H, Liu C, et al. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres[J]. Carbon,2011,49:4322-4330. doi: 10.1016/j.carbon.2011.06.005
    [10]
    Lee J, Lim J W, Kim M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites,2020,41(4):1190-1202. doi: 10.1002/pc.25445
    [11]
    Andideh M Esfandeh M. Statistical optimization of treatment conditions for the electrochemical oxidation of PAN-based carbon fiber by response surface methodology: Application to carbon fiber/epoxy composite[J]. Composites Science and Technology,2016,134:132-143. doi: 10.1016/j.compscitech.2016.08.008
    [12]
    Scarselli G, Quan D, Prasad V, et al. Mode I fracture toughness of glass fibre reinforced thermoplastic composites after UV and atmospheric plasma treatments[J]. Composites Science and Technology,2023,236:109982. doi: 10.1016/j.compscitech.2023.109982
    [13]
    Li N, Cheng S, Wang B, et al. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: A step closer to industrial production[J]. Composites Science and Technology,2023,231:109822. doi: 10.1016/j.compscitech.2022.109822
    [14]
    Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:248-256. doi: 10.1016/j.compositesa.2017.02.004
    [15]
    Altay L, Bozaci E, Atagur M, et al. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites[J]. Journal of Applied Polymer Science,2018,136(9):47131.
    [16]
    Peng S H, Guo Q P, Hartley P G, et al. Azobenzene moiety variation directing self-assembly and photoresponsive behavior of azo-surfactants[J]. Journal of Materials Chemistry C,2014,2:8303-8312. doi: 10.1039/C4TC00321G
    [17]
    Tsuchiya K, Orihara Y, Kondo Y, et al. Control of viscoelasticity using redox reaction[J]. Journal of the American Chemical Society,2004,126:12282-12283. doi: 10.1021/ja0467162
    [18]
    Ren G, Wang L, Chen Q, et al. pH Switchable Emulsions Based on Dynamic Covalent Surfactants[J]. Langmuir,2017,33(12):3040-3046. doi: 10.1021/acs.langmuir.6b04546
    [19]
    Saji T, Hoshino K, Aoyagui S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. Journal of the American Chemical Society,1985,107:6865-6868. doi: 10.1021/ja00310a020
    [20]
    Zhang Y, Yang C, Guo S, et al. Tandem triggering of wormlike micelles using CO2 and Redox[J]. Composites Communications,2016,52:12717-20.
    [21]
    Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials,2006,135:264-273. doi: 10.1016/j.jhazmat.2005.11.062
    [22]
    Heinze J. Cyclic voltammetry-electrochemical spectroscopy[J]. Angewandte Chemie International Edition,1984,23:831-847. doi: 10.1002/anie.198408313
    [23]
    Paiva M C, Bernardo C A, Nardin M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres[J]. Carbon,2000,3:1323-1337.
    [24]
    Yao T T, Wu G P, Song C. Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test[J]. Composites Science and Technology,2017,149:108-115. doi: 10.1016/j.compscitech.2017.06.017
    [25]
    Wu H F, Netrwavali A N. Weibull analysis of strength-length relationships in single Nicalon SiC fibres[J]. Journal of Materials Science,1992,27(12):3318-3324. doi: 10.1007/BF01116031
    [26]
    Lazzari L K, Zampieri V B, Neves R M, et al. A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels[J]. Cellulose,2018,26:1231-1246.
    [27]
    Ho Y S, Porter J F, Mckay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems[J]. Water, Air, and Soil Pollution,2002,141:1-33. doi: 10.1023/A:1021304828010
    [28]
    Takei T, Sakai H, Kondo Y, et al. Electrochemical control of solubilization using a ferrocene-modified nonionic surfactant[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2001,183-185:757-765. doi: 10.1016/S0927-7757(01)00502-7
    [29]
    Huang H, Fan Y F, Wang J W, et al. Adsorption kinetics and thermodynamics of water-insoluble crosslinked β-cyclodextrin polymer for phenol in aqueous solution[J]. Macromolecular Research,2013,21:726-731. doi: 10.1007/s13233-013-1086-6
    [30]
    Servinis L, Henderson L C, Andrighetto L M, et al. A novel approach to functionalise pristine unsized carbon fibre using in situ generated diazonium species to enhance interfacial shear strength[J]. Journal of Materials Chemistry A,2015,3:3360-3371. doi: 10.1039/C4TA04798B
    [31]
    Lachman N, Carey B J, Hashim D P, et al. Application of continuously-monitored single fiber fragmentation tests to carbon nanotube/carbon microfiber hybrid composites[J]. Composites Science and Technology,2012,72:1711-1717. doi: 10.1016/j.compscitech.2012.06.004
    [32]
    Shao Y, Xu F, Liu W, et al. Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite[J]. Composites Part B:Engineering,2017,125:195-202. doi: 10.1016/j.compositesb.2017.05.077
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(171) PDF Downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return