Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141
Citation: HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141

Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors

doi: 10.19869/j.ncm.1007-8827.20180141
Funds:  National Natural Science Foundation of China (U1010119, 52072383); Key Research and Development Program of Shanxi Province (201603D112007); Youth Innovation Promotion Association of the Chinese Academy of Sciences (118800QCH1); Shanxi Natural Science Foundation (201801D221371).
More Information
  • Corresponding author: SONG Yan, Professor. E-mail: yansong1026@126.com
  • Received Date: 2018-10-16
  • Rev Recd Date: 2018-11-23
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Pitch/polyacrylonitrile carbon nanofiber non-woven fabrics (P/PAN CNFs) for use as supercapacitor electrode materials were prepared by electrospinning a mixed solution of pitch and PAN, followed by stabilization and carbonization. Results indicate that P/PAN CNFs have a smaller fiber diameter, higher conductivity, larger specific surface area and moderate pore size compared with PAN CNFs, which increases the capacitance and rate capability of the supercapacitors. When the mass ratio of pitch to PAN was 1/1.5, the P/PAN CNF (P/PAN-1/1.5) showed a high capacitance of 219 F g−1 at a current density of 0.1 A g−1, a value 1.38 times that of PAN CNF. When the current density was increased to 50 A g−1, the capacitance retention of the P/PAN-1/1.5 was 69.4%, 42.8% larger than that of PAN CNF. A symmetrical supercapacitor based on P/PAN-1/1.5 had an energy density of 4.8 Wh kg−1 at a power density of 14.8 kW kg−1 and a capacitance retention rate of 94.1% after 20 000 cycles.
  • loading
  • [1]
    Cheng Y, Huang L, Xiao X, et al. Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor[J]. Journal of Power Sources,2016,327:488-494. doi: 10.1016/j.jpowsour.2016.07.071
    [2]
    Liao F, Han X, Zhang Y, et al. Solvothermal synthesis of porous MnCo2O4.5 spindle-like microstructures as high-performance electrode materials for supercapacitors[J]. Ceramics International,2018,44:22622-22631. doi: 10.1016/j.ceramint.2018.09.038
    [3]
    Béguin F, Szostak K, Lota G, et al. A Self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends[J]. Advanced Materials,2005,17:2380-2384. doi: 10.1002/adma.200402103
    [4]
    Liu M, Wei F, Yang X, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33:316-323. doi: 10.1016/S1872-5805(18)60342-7
    [5]
    Guo X, Zhang X, Song H, et al. Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage[J]. J Mater Chem A,2017,5:21343-21352. doi: 10.1039/C7TA05621D
    [6]
    Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [7]
    Song X, Wang S, Bao Y, et al. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:6832-6839. doi: 10.1039/C7TA01171G
    [8]
    Tai Z, Yan X, Lang J, et al. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets[J]. Journal of Power Sources,2012,199:373-378. doi: 10.1016/j.jpowsour.2011.10.009
    [9]
    Shi Z, Chong C, Wang J, et al. Electrospun pitch/polyacrylonitrile composite carbon nanofibers as high performance anodes for lithium-ion batteries[J]. Materials Letters,2015,159:341-344. doi: 10.1016/j.matlet.2015.07.033
    [10]
    Ra E J, Raymundo-Piñero E, Lee Y, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper[J]. Carbon,2009,47:2984-2992. doi: 10.1016/j.carbon.2009.06.051
    [11]
    张校菠, 陈名海, 张校刚, 等. 静电纺丝制备多孔碳纳米纤维及其电化学电容行为[J]. 物理化学学报,2010,26(12):3169-3174. doi: 10.3866/PKU.WHXB20101203

    Zhang X B, Chen M H, Zhang X G, et al. Preparation of porous carbon nanofibers by electrospinningand their electrochemical capacitive behavior[J]. ACTA Physico-Chimica Sinica,2010,26(12):3169-3174. doi: 10.3866/PKU.WHXB20101203
    [12]
    Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta,2016,196:189-196. doi: 10.1016/j.electacta.2016.02.050
    [13]
    Imaizumi S, Matsumoto H, Suzuki K, et al. Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl butyral) and Electrolytes[J]. Polymer Journal,2009,41:1124-1128. doi: 10.1295/polymj.PJ2009160
    [14]
    Li X, Tian X, Yang T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: An effective approach to coal waste management[J]. ACS Sustainable Chemistry & Engineering,2019,7:5742-5750. doi: 10.1039/C4TA00069B
    [15]
    Li X, Sun N, Tian X, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34:2445-2451.
    [16]
    Le T, Yang Y, Yu L, et al. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode[J]. Journal of Applied Polymer Science,2016,133:1-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (78) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return