JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, YANG Hong-yan, LIU Rui-xiang, CHEN Cheng-meng. Research progress on electrode materials and electrolytes for supercapacitors[J]. NEW CARBOM MATERIALS, 2017, 32(2): 106-115.
Citation: JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, YANG Hong-yan, LIU Rui-xiang, CHEN Cheng-meng. Research progress on electrode materials and electrolytes for supercapacitors[J]. NEW CARBOM MATERIALS, 2017, 32(2): 106-115.

Research progress on electrode materials and electrolytes for supercapacitors

Funds:  Natural Science Foundation of Shanxi Province, China (2015021062).
  • Received Date: 2016-12-30
  • Accepted Date: 2017-04-26
  • Rev Recd Date: 2017-03-31
  • Publish Date: 2017-04-28
  • Supercapacitors have great potential applications for electronic devices, and energy recyling and storage areas owing to their high power density, long cycle life, high safety and excellent performance at low temperatures. The electrode materials and electrolytes are two key factors that influence their performance. The electrode materials used in supercapacitors include carbon materials such as activated carbons, carbon nanotubes, graphene, carbon nanofibers and carbon nano-onions, metal oxides, conductive polymers and their composites. The electrolytes are aqueous electrolytes, organic electrolytes or ionic liquids. Here research progress on the electrode materials and liquid electrolytes for supercapacitors is summarized, their advantages and disadvantages are analyzed, and new electrode materials and electrolytes are suggested.
  • loading
  • [1]
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9): 2520-2531.
    [2]
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845-854.
    [3]
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Materials Letters, 2015, 157: 273-276.
    [4]
    Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.
    [5]
    Raymundo-Pinero E, Azais P, Cacciaguerra T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.
    [6]
    Peng C, Yan X B, Wang R T, et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochim Acta, 2013, 87(1): 401-408.
    [7]
    郑冬芳, 贾梦秋, 徐 斌, 等. 高性能超级电容器用高比表面积层次孔结构炭材料的简便制备[J]. 新型炭材料, 2013, 28(2): 151-155. (ZHENG Dong-fang, JIA Meng-qiu, XU Bin, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Materials, 2013, 28(2): 151-155.)
    [8]
    Teo E Y L, Muniandy L, Ng E P, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J]. Electrochim Acta, 2016, 192: 110-119.
    [9]
    Huang K J,Wang L,Zhang J Z,et al. One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor[J]. Energy, 2014, 67(1): 234-240.
    [10]
    Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. J Phys Chem C, 2009, 113(30): 13103-13107.
    [11]
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584.
    [12]
    Kong Q Q, Chen C M, Zhang Q, et al. Small particles of chemically-reduced graphene with improved electrochemical capacity[J]. J Phys Chem C, 2013, 117(30): 15496-15504.
    [13]
    Hsu Y H, Lai C C, Ho C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochim Acta, 2014, 127(1): 369-376.
    [14]
    Ma C, Song Y, Shi J L, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon, 2013, 51(1): 290-300.
    [15]
    Gao Y, Zhou Y S, Qian M, et al. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes[J]. Carbon, 2013, 51(1): 52-58.
    [16]
    Hu C C, Chang K S, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Lett, 2006, 6(12): 2690-2695.
    [17]
    Chang K H, Hu C C, Chou C Y. Textural and pseudocapacitive characteristics of sol-gel derived RuO2·xH(2)O: Hydrothermal annealing vs. annealing in air[J]. Electrochim Acta, 2009, 54(3): 978-983.
    [18]
    Wang Y T, Lu A H, Zhang H L, et al. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors[J]. J Phys Chem C, 2011, 115(13): 5413-5421.
    [19]
    Kim S I, Lee J S, Ahn H J, et al. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology[J]. ACS Appl Mater Inter, 2013, 5(5): 1596-1603.
    [20]
    Xia X, Tu J, Zhang Y, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances, 2012, 2(5): 1835-1841.
    [21]
    Pu J, Cui F, Chu S, et al. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. ACS Sustain Chem Eng, 2014, 2(4): 809-815.
    [22]
    Ghennatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor[J]. Syn Metals, 2009, 159(17-18): 1717-1722.
    [23]
    Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochem Commun, 2008, 10(2): 268-272.
    [24]
    Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Lett, 2013, 13(5): 2078-2085.
    [25]
    Plonska-Brzezinska M E, Julita M, Barbara P, et al. Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline[J]. Chem Eur J, 2012,18(9): 2600-2608.
    [26]
    Huq M M, Hsieh C T, Ho C Y. Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications[J]. Diam Relat Mater, 2015, 62: 58-64.
    [27]
    王 琴, 李建玲, 高 飞, 等. 超级电容器用聚苯胺/活性炭复合电极的研究[J]. 新型炭材料, 2008, 23(3): 275-280. (WANG Qin, LI Jian-Ling, GAO Fei, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials, 2008, 23(3): 275-280.)
    [28]
    Xie L J, Su F Y, Xie L F, et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode[J]. Chem Sus Chem, 2015, 8(17): 2917-2926.
    [29]
    Xu Y, Wang L, Cao P, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors[J]. J Power Sources, 2016, 306: 742-752.
    [30]
    Galin'ski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes[J]. Electrochim Acta, 2006, 51(26): 5567-5580.
    [31]
    Jin Z, Yan X D, Yu Y H, et al. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors[J]. J Mater Chem A, 2014, 2(30): 11706-11715.
    [32]
    Jimenez-Cordero D, Heras F, Gilarranz M, et al. Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes[J]. Carbon, 2014, 71(7): 127-138.
    [33]
    Torchala K, Kierzek K, Machnikowski J. Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes[J]. Electrochim Acta, 2012, 86(4): 260-267.
    [34]
    Sun S J, Song J, Shan Z Q, et al.Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor[J]. J Electroanal Chem, 2012, 676(1): 1-5.
    [35]
    Zhao L, Qiu Y, Yu J, et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density[J]. Nanoscale, 2013, 5(11): 4902-4909.
    [36]
    Demarconnay L, Raymundo-Piñero E, Béguin F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution[J]. Electrochem Commun, 2012, 12(10): 1275-1278.
    [37]
    Catalog Handbook of Fine Chemicals[M]. Aldrich Chemical Company, Gillingham, Kent, 1993.
    [38]
    Ue M, Ida K, Mori S. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors[J]. J Electrochem Soc, 1994, 141(11): 2989-2996.
    [39]
    Coetzee J E. Commission on Electroanalytical Chemistry International Union of Pure and Applied Chemistry. Recommended Methods for Purification of Solvents and Tests for Impurities[M]. Pergamon Press, New York, 1982.
    [40]
    Barthel J, Gores H J, Schmeer G et al. Nonaqueous Electrolyte Solutions in Chemistry and Modern Technology[M]. Springer, Berlin, Heidelberg, 1983.
    [41]
    Yu X W, Wang J, Wang C L, et al. A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1')-bipyrrolidinium tetrafluoroborate in mixtures solvents[J]. Electrochim Acta, 2015, 182: 1166-1174.
    [42]
    Shi Z, Yu X W, Wang J, et al. Excellent low temperature performance electrolyte of spiro-(1,1’)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor[J]. Electrochim Acta, 2015, 174: 215-220.
    [43]
    Lai Y Q, Chen X, Zhang Z, et al. Tetraethylammonium difluoro (oxalato) borate as electrolyte salt for electrochemical double-layer capacitors[J]. Electrochim Acta, 2011, 56(18): 6426-6430.
    [44]
    Zhou H M, Sun W J, Li J. Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor[J]. J Cent South Univ, 2015, 22(7): 2435-2439.
    [45]
    Nono Y, Kouzu M, Takei K, et al. EDLC performance of various activated carbons in spiro-type quaternary ammonium salt electrolyte solutions[J]. Electrochemistry, 2010, 78(5): 336-338.
    [46]
    Yu H, Wu J, Fan L, et al. An efficient redox-mediated organic electrolyte for high-energy supercapacitor[J]. J Power Sources, 2014, 248(4): 1123-1126.
    [47]
    Orita A, Kamijima K, Yoshida M, et al. Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes[J]. J Power Sources, 2010, 195(19): 6970-6976.
    [48]
    Lewandowski A, Olejniczak A, Galinski M, et al. Performance of carbon-carbon supercapacitors based on organic,aqueous and ionic liquid electrolytes[J]. J Power Sources, 2010, 195(17): 5814-5819.
    [49]
    Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett, 2010, 10(12): 4863-4868.
    [50]
    Rennie A J, Sanchezramirez N, Torresi R M, et al. Ether-bondcontaining ionic liquids as supercapacitor electrolytes[J]. J Phys Chem Lett, 2013, 4(17): 2970-2974.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (349) PDF downloads(3141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return