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Materials

Aniline, ammonium persulfate, polyvinyl alcohol (PVA) and graphite foil (50 um) were
purchased from aladdin reagent Co., Ltd. Silica dispersion was purchased from sigma-
aldrich trading Co., Ltd. And, sulfuric acid and sodium hydroxide were purchased from

sinopharm chemical reagent Co., Ltd.

Calculation
The specific capacitance of the electrode materials in three-electrode system is

calculated by the GCD profiles according to the following equation:

_Ixt
™AV X m

C,, (F g'!)is the mass specific capacitance, I (A)is the constant discharge current,
t (s) is the discharge time, AV (V) is the test voltage range, and m (g) is the mass of
the active electrode materials.
The specific capacitance of the device is calculated by the CV curves according to the

following equations:
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Caecice (F) is the absolute capacitance of the device, Cgpeq; (MmF cm™) is the areal
capacitance of the device, Coopmetric (F cm™) is the volumetric capacitance of the

device, v (V s™') is the scan rate, V; and V¢ (V) are the initial and terminal potentials,
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and I (A) is the discharge current. A (cm™) and V (cm™) are the area and volume of the
two electrodes of the device, respectively.
The energy density and power density of the device are calculated using the formulas

as follows:

(AV)?
Eqrear = E X Careal X m

areal

E
Pareal = T X 3600

(av)?
Evolumetric = E X Cvolumetric X m

Evolumetric

Pyotumetric = T x 3600

Egrear (WWh ecm™) and Eygpumetric (mMWh ecm™) are areal energy density and
volumetric energy density, Pgreqr (WW cm™) and P,opmetric (MW cm™) are areal
power density and volumetric power density, respectively, and At (s) is the discharge

time, AV (V) is the voltage range.
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Fig. S1 (a-c) SEM images of (a) mNC/G-7, (b) mNC/G-12 and (c) mNC/G-22.
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Fig. S2 (a) Nitrogen adsorption-desorption isotherm of mNC/G-12 (Inset: pore size
distribution curve). (b) Nitrogen adsorption-desorption isotherm of mNC/G-22 (Inset:

pore size distribution curve).
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Fig. S3 The height profile of mNC/G-7 corresponding to AFM in Fig. 2h.
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Fig. S4 The XPS spectrum of mNC/G-7.
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Fig. S5 CV curves of mNC/G-7, mNC/G-12 and mNC/G-22 obtained at 50 m V s™'.
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Fig. S6 Electrochemical performance of NC/G. (a) CV curves and (b) GCD profiles of

NC/G. (c) EIS plots of NC/G and mNC/G-7. (d) Specific capacity versus current density

of NC/G and mNC/G-7.

Fig. S6 exhibits the electrochemical performance of NC/G. The CV curves at

different scan rates and GCD profiles at varying current densities indicate similar

electrochemical behavior to mNC/G (Fig. S6a and S6b). As shown in Fig. Sé6c, the

internal resistance and ion transport resistance of NC/G are significantly bigger than

mNC/G-7. Meanwhile, NC/G delivers specific capacitance of 128 F g at 0.5 A g and

43 F g at 20 A g'!, which are much lower than mNC/G-7 (Fig. S6d).
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Fig. S7 Schematic diagram of interdigital mNC/G-MSC.
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Fig. S8 Cycling stability of mNC/G-MSCs at 0.3 mA cm™.
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Table S1 Porous structure parameters of mNC/G nanosheets with different

mesopore size

SAA Pore volume Pore size
Samples
(m*g™) (cm? gl (nm)
mNC/G-7 433 0.84 6.5
mNC/G-12 374 0.95 9.8
mNC/G-22 249 0.90 23.9
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Table S2 Performance comparison of mNC/G with other graphene-based

materials
Specific
Materials Electrolyte Test conditions Refs.
capacitance
1 M H,SOy4/ 105 F g!
HA-GCNs 2.0mVs! 1
6 M KOH 148 F g
BCN-700 1 M HaSO4 131 Fg! 02A¢g! 2
LC-3 6 M KOH 220F g'! 0.1Ag! 3
MHPC 6 M KOH 170 F g'! 05Ag! 4
DCNS 1 M HxSO4 222 F gt 1.0Ag! 5
mNC/G 1 M H,S04 267F g! 05Ag! This work

Note: HA-GCNs: Heteroatom-containing graphene-like carbon nanosheets; BCN-700: Boron and nitrogen co-doped
graphene; LC-3: Porous carbon nanosheets/particle composite; MHPC: Multi-heteroatoms co-doped porous carbon;

DCNS: Defective carbon nanosheets.
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Table S3 Performance comparison of our mNC/G-MSCs with other graphene-

based MSCs
Volumetric Volumetric
Materials Electrolyte =~ Voltage Refs.
power density energy density
rG/SPANI PVA/H,SO4 0.8V - 1.5 mWh cm? 6
rGO-CNT 3 M KCI 1.0V 77000 mW cm™ 0.7 mWh cm? 47
PVA/H,SOq4 1.0V 60000 mW cm? 0.2 mWh cm
LSG 8
FS-IL ionogel 2.5V 140000 mW cm 1.2 mWh cm
PRG PVA/H,SOq4 08V - 1.5 mWh cm? 9
TAGNs PVA/H,SO4 0.8V 300 mW cm™ 1.4 mWh cm? 10
LSG/SWCNTs PVA/H3;PO, 1.0V 1000 mW cm 0.8 mWh cm™ 11
mNC/G PVA/H,S04 0.8V 542.4 mW cm? 1.9 mWhcem?  This work

Note: rG/SPANI: Graphene/sulfonated polyaniline; rGO-CNT: Reduced graphene oxide/carbon nanotubes; LSG:

Laser-scribed graphene; PRG: Photochemically reduced graphene; TAGNs: Template-assisted graphene nanosheets;

LSG/SWCNTs: Laser-scribed graphene/carbon nanotubes;

methylimidazolium bis(trifluoromethylsulfonyl).

FS-IL ionogel:

Silica nanopowder/1-butyl-3-
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