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Materials 

Aniline, ammonium persulfate, polyvinyl alcohol (PVA) and graphite foil (50 μm) were 

purchased from aladdin reagent Co., Ltd. Silica dispersion was purchased from sigma-

aldrich trading Co., Ltd. And, sulfuric acid and sodium hydroxide were purchased from 

sinopharm chemical reagent Co., Ltd. 

 

Calculation 

The specific capacitance of the electrode materials in three-electrode system is 

calculated by the GCD profiles according to the following equation: 

𝐶𝑚 =
𝐼 × 𝑡

∆𝑉 × 𝑚
 

𝐶𝑚 (F g-1) is the mass specific capacitance, 𝐼 (A) is the constant discharge current, 

𝑡 (s) is the discharge time, ∆𝑉 (V) is the test voltage range, and 𝑚 (g) is the mass of 

the active electrode materials. 

The specific capacitance of the device is calculated by the CV curves according to the 

following equations: 

𝐶𝑑𝑒𝑐𝑖𝑐𝑒 =
1

𝑣(𝑉𝑓 − 𝑉𝑖)
∫ 𝐼𝑑𝑉

𝑉𝑓

𝑉𝑖

 

𝐶𝑎𝑟𝑒𝑎𝑙 =
𝐶𝑑𝑒𝑣𝑖𝑐𝑒

𝐴
 

𝐶𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 =
𝐶𝑑𝑒𝑣𝑖𝑐𝑒

𝑉
 

𝐶𝑑𝑒𝑐𝑖𝑐𝑒  (F) is the absolute capacitance of the device, 𝐶𝑎𝑟𝑒𝑎𝑙  (mF cm-2) is the areal 

capacitance of the device, 𝐶𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 (F cm-3) is the volumetric capacitance of the 

device, 𝑣 (V s-1) is the scan rate, 𝑉𝑖  and 𝑉𝑓  (V) are the initial and terminal potentials, 
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and 𝐼 (A) is the discharge current. A (cm-2) and V (cm-3) are the area and volume of the 

two electrodes of the device, respectively. 

The energy density and power density of the device are calculated using the formulas 

as follows: 

𝐸𝑎𝑟𝑒𝑎𝑙 =
1

2
× 𝐶𝑎𝑟𝑒𝑎𝑙 ×

(∆𝑉)2

3600
 

𝑃𝑎𝑟𝑒𝑎𝑙 =
𝐸𝑎𝑟𝑒𝑎𝑙

∆𝑡
× 3600 

𝐸𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 =
1

2
× 𝐶𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 ×

(∆𝑉)2

3600
 

𝑃𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 =
𝐸𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐

∆𝑡
× 3600 

𝐸𝑎𝑟𝑒𝑎𝑙  (μWh cm-2) and 𝐸𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐  (mWh cm-3) are areal energy density and 

volumetric energy density, 𝑃𝑎𝑟𝑒𝑎𝑙  (μW cm-2) and 𝑃𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐  (mW cm-3) are areal 

power density and volumetric power density, respectively, and ∆𝑡 (s) is the discharge 

time, ∆𝑉 (V) is the voltage range.
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Fig. S1 (a-c) SEM images of (a) mNC/G-7, (b) mNC/G-12 and (c) mNC/G-22. 
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Fig. S2 (a) Nitrogen adsorption-desorption isotherm of mNC/G-12 (Inset: pore size 

distribution curve). (b) Nitrogen adsorption-desorption isotherm of mNC/G-22 (Inset: 

pore size distribution curve). 
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Fig. S3 The height profile of mNC/G-7 corresponding to AFM in Fig. 2h. 
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Fig. S4 The XPS spectrum of mNC/G-7. 
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Fig. S5 CV curves of mNC/G-7, mNC/G-12 and mNC/G-22 obtained at 50 m V s-1. 
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Fig. S6 Electrochemical performance of NC/G. (a) CV curves and (b) GCD profiles of 

NC/G. (c) EIS plots of NC/G and mNC/G-7. (d) Specific capacity versus current density 

of NC/G and mNC/G-7. 

Fig. S6 exhibits the electrochemical performance of NC/G. The CV curves at 

different scan rates and GCD profiles at varying current densities indicate similar 

electrochemical behavior to mNC/G (Fig. S6a and S6b). As shown in Fig. S6c, the 

internal resistance and ion transport resistance of NC/G are significantly bigger than 

mNC/G-7. Meanwhile, NC/G delivers specific capacitance of 128 F g-1 at 0.5 A g-1 and 

43 F g-1 at 20 A g-1, which are much lower than mNC/G-7 (Fig. S6d). 
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Fig. S7 Schematic diagram of interdigital mNC/G-MSC. 

 

 

 

  



New Carbon Materials, 2022, 37(5): 936-943 

 

 

 

Fig. S8 Cycling stability of mNC/G-MSCs at 0.3 mA cm-2. 
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Table S1  Porous structure parameters of mNC/G nanosheets with different 

mesopore size 

Samples 
SAA 

(m2 g-1) 

Pore volume 

(cm-3 g-1) 

Pore size 

(nm) 

mNC/G-7 433 0.84 6.5 

mNC/G-12 374 0.95 9.8 

mNC/G-22 249 0.90 23.9 
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Table S2  Performance comparison of mNC/G with other graphene-based 

materials 

Materials Electrolyte 
Specific 

capacitance 
Test conditions Refs. 

HA-GCNs 
1 M H2SO4/ 

6 M KOH 

105 F g-1 

148 F g-1 
2.0 mV s-1 1 

BCN-700 1 M H2SO4 131 F g-1 0.2 A g-1 2 

LC-3 6 M KOH 220 F g-1 0.1 A g-1 3 

MHPC 6 M KOH 170 F g-1 0.5 A g-1 4 

DCNS 1 M H2SO4 222 F g-1 1.0 A g-1 5 

mNC/G 1 M H2SO4 267 F g-1 0.5 A g-1 This work 

Note: HA-GCNs: Heteroatom-containing graphene-like carbon nanosheets; BCN-700: Boron and nitrogen co-doped 

graphene; LC-3: Porous carbon nanosheets/particle composite; MHPC: Multi-heteroatoms co-doped porous carbon; 

DCNS: Defective carbon nanosheets. 
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Table S3  Performance comparison of our mNC/G-MSCs with other graphene-

based MSCs 

Materials Electrolyte Voltage 
Volumetric  

power density 

Volumetric 

energy density 
Refs. 

rG/SPANI PVA/H2SO4 0.8 V - 1.5 mWh cm-3 6 

rGO-CNT 3 M KCl 1.0 V 77000 mW cm-3 0.7 mWh cm-3 7 

LSG 
PVA/H2SO4 

FS-IL ionogel 

1.0 V 

2.5 V 

60000 mW cm-3 

140000 mW cm-3 

0.2 mWh cm-3 

1.2 mWh cm-3 
8 

PRG PVA/H2SO4 0.8 V - 1.5 mWh cm-3 9 

TAGNs PVA/H2SO4 0.8 V 300 mW cm-3 1.4 mWh cm-3 10 

LSG/SWCNTs PVA/H3PO4 1.0 V 1000 mW cm-3 0.8 mWh cm-3 11 

mNC/G PVA/H2SO4 0.8 V 542.4 mW cm-3 1.9 mWh cm-3 This work 

Note: rG/SPANI: Graphene/sulfonated polyaniline; rGO-CNT: Reduced graphene oxide/carbon nanotubes; LSG: 

Laser-scribed graphene; PRG: Photochemically reduced graphene; TAGNs: Template-assisted graphene nanosheets; 

LSG/SWCNTs: Laser-scribed graphene/carbon nanotubes; FS-IL ionogel: Silica nanopowder/1-butyl-3-

methylimidazolium bis(trifluoromethylsulfonyl). 
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