Supporting Information

N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage
 Hui-zhu Niu ${ }^{1}$, Hai-hua Wang ${ }^{1,2,3,,^{*}}$, Li-yu Sun ${ }^{1}$, Chen-rong Yang ${ }^{1}$, Yu Wang ${ }^{4}$, Cao Rui ${ }^{1}$, Cunguo Yang ${ }^{1}$, Jie Wang ${ }^{1}$, Ke-wei Shu ${ }^{1, *}$

1. Shaanxi University of Science and Technology, School of Chemistry and Chemical Engineering, Xuefu Road, Weiyang District, Xi'an, Shaanxi Proviñce, CN 710021
2. Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, P, R. China
3. Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
4. Xi'an North Huian Chemical Industry Co, Yuxia Town, Hu Yi District, Xi'an, Shaanxi Province, CN 710302
[^0]Table S1 element content

Fig. S1 (a) The XRD patterns and (b) Raman spectra of PC700.

Fig. S2 (a) The elemental content of PC1200 and NSPC1200; (b) The XPS survey spectra of NSPC1200; (c) and (d) The High-resolution C 1s and O 1s spectra of NSPC1200.

Fig. S3 (a) The charge/discharge curves and (b) rate performances of PC700.

Fig. S4 The discharge curves of PC1200 and NSPC1200 at a current density of $500 \mathrm{~mA} \mathrm{~g}^{-1}$.

Fig. S5 (a) The CV curves at various scan rates (from 0.1 to $1.0 \mathrm{mV} \mathrm{s}^{-1}$); (b) The relationship between the peak current and scan rate in logarithmic format; (c) The capacitive contribution to charge storage at a scan rate of 0.2 $\mathrm{mV} \mathrm{s}^{-1}$; (d) The contribution ratio of the capacitive and intercalated charge to capacity at different scan rates.

[^0]: * Correspondence: WANG Hai-hua, Professor. E-mail: whh@sust.edu.cn

 SHU Ke-wei, Associate Professor. E-mail: shukw@sust.edu.cn

