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1. Characterizations

The morphology of the catalysts was inspected using scanning electronic microscopy (SEM,
Sirion 200) and transmission electronic microscopy (TEM, JEOL, JEM-2100). X-ray diffraction
(XRD) patterns were obtained by a MiniFlex-600 diffractometer. The Raman spectra were

collected on an in Via Reflex spectrometer with 532 nm laser excitation. The

Brunauer-Emmett-Teller (BET) surface area and the pore size distribution w r%y
nitrogen adsorption-desorption isotherms on a quantachrome adsorption a

photoelectron spectroscopy was implemented by virtue of % isher K-Alpha
instrument.

2. Electrochemical performance evaluatio y

All electrochemical experiments were i
pine electrochemical workstation outf a
Instrument Co.,Ltd.) under a ‘- ®. First, a dispersion system composed of 4 mg of
the prepared catalyst pow: %ethanol, and 20 pL of 5 wt% Nafion were sonicated for

30 minutes to offain dgataly . Next, 10 pL of the catalyst ink was coated onto the working

-ray

ente ploying a three-electrode system on a

drive 20) with MSR electrode rotator (Pine

electro E), and then dried in air. A Glass carbon electrode (GCE) was employed

lectrode, a platinum wire as the counter electrode, and an Ag/AgCl (KCI,

electrode as the reference electrode. As a comparison, a commercial Pt/C catalyst with

the same mass loading was executed for the ORR measurements. According to the Nernst formula:

Erue = Eagagcer +0.059 x pH + 0.197, all the electrochemical potentials measured on the Ag/AgCl

reference electrode were transformed into the RHE scale.

Before the ORR measurement, N> or O, was flowed into the KOH solution for 30 min to
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guarantee that it was saturated with N2 or Oz, and the catalyst was activated by multiple CV cycles
until it generated a stable CV curve. CV curves recorded in an 0.1 M Nz- or O»- saturated KOH
electrolyte with a scanning speed of 50 mV s*'. RDE measurements were conducted by LSV from

0.2 to -1 V versus Ag/AgCl in 0.1 M O;-saturated KOH with a scan rate of 10 mV s ! at different
rotation speeds from 400 to 2500 rpm. The ORR durability was executed by a chronoamperometry
experiment in 0.1 M Os-saturated KOH electrolyte at a stationary potential of 0.6 V%E.
The current response collected against time over a period of 21600 s W&S{M 02
saturated KOH solution at a rotation speed of 1600 rpm. %
The number of electrons transferred during ﬂ‘ &1 termined via the

Koutecky-Levich (K-L) equations:

(1

Where the kinematic cur

electron number per oxyge : represents the Faraday constant (F= 96485 C

mol!). A is the aredfof the trode (0.196 cm?). Co refers to the bulk concentration of O»

(1.2 x10¢ is the diffusion coefficient of Oz in 0.1 M KOH at room
tempgr 10 5 cm? s ). v refers to the kinematic viscosity (0.01 cm? s). ®
co to0 the rotational speed of the electrode in radians per second (27 rpm/60).

The RRDE test was implemented via LSV from 0.2 to -1 V versus Ag/AgCI with a scanning
speed of 10 mV s ~! at 1600 rpm. Meanwhile the ring electrode was maintained at 1.3 V versus
RHE. The number of transferred electrons (n) and the percentage of hydrogen peroxide (H20>)

were counted by using the following formula: n = 4 x 14 /(Iq + I/N) (2) and H20; (%) = 200 x

(I/N)/(Ig + 1/N) (3), where 14 refers to the disk current, I; refers to the ring current, and N
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symbolizes the collection coefficient of the platinum wire (N = 0.37).

Fig. S1. SEM images of ( )%
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Fig. S2. Raman spectra of Co-N@CNT-C790 and Co-N@CNT-Coo.
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Table S1 Summary of the specific surface area, pore vol
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Fig. S6. XPS spectra of C-N@CNT-Crqo. (a) survey. (b) N 1s.
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Fig. S7. XPS spectra of C-N@CNT-Cogo. (a) survey. (b) N 1%
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Fig. S8. Content and type of N of all samples
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Tab. S2 N1s peak fitting results of all catalysts

samples Pyridinic-N Pyrrolic-N Graphitic-N Oxygenated-N
Co-N@CNT-Csoo 42.97 12.41 41.83 2.94

C-ZIF-8300 39.53 19.17 12.67 28.63

C-ZIF-67300 31.83 18.52 31.42 8.23
Co-N@CNT-Cro0 34.66 20.05 18.65 ‘\2 .

Co-N@CNT-Cooo 13.41 22.83
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Fig. S9. (a) CVs of @CNRC 700 1n 0.1 M O2/Nz-saturated KOH electrolyte (scanning rate: 50
mV s-1). () es of C-N@CNT-Crgo in 0.1 M Os-saturated KOH electrolyte at different

rotatidga eds (Mem 400 to 2500 rpm) (scanning rate: 10 mV s-1).
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Fig. S10. (a) CVs of C-N@CNT-Cogo in 0.1 M O2/N»-saturated KOH electrolyt M 0
mV s-1). (b) LSV curves of C-N@CNT-Co0o°C in 0.1 M O»-saturated K%\ at different

rotational speeds (from 400 to 2500 rpm) (scanning rate: 10 m .
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Table. S3. Comparison of ORR performance of this work with recently reported similar catalysts

in alkaline medium.

Entry Catalyst Eonset (V) Ehatt-wave (V) Reference Ref
1 Fe7Cs@FeNC 0.96 0.83 ACS Sustainable Chem. Eng. 2019 [1]
2 Co@N-CNTF-2 0.91 0.81 J. Mater. Chem. A 2019 [2]

3 Co-N-C@F127 0.84 Energ. Environ. Sci. 2019 x -[3>
4 CoNCF-1000-80 0.92 0.83 Small 2018 \y 4]
5 Co/CoP—HNC 0.94 0.83 . % 5]

6 Co/N CCPC-3 0.921 0.827

(6]

9 C-MOF-C2-900 Adv. Mater. 2018 9]

7 Co/CoP-HNC 0.94 0.83 erWloriz.
8 Co—N/CNFs 0.94 % CS Catal. 2017 (8]
0.3

10 LDH@ZIF-67-800

Adv. Mater. 2016 [10]

0.83 ACS Nano 2016 [11]

0.83 J. Power Sources 2019 [12]

0.84 This work
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Table. S4. Co and Zn atom quantification determined by using inductively coupled plasma

optical emission spectroscopy (ICP-OES) as function of Co-N@CNT-Cgoo, C-ZIF-8g00 and

C-ZIF-67300.
Wt% Co-N@CNT-Csoo C-ZIF-8s00 C-ZIF-67s00
Co 21.79 16.84 0
Zn 0.17 0 23.

acid-Co-N@CNT-C,
Co-N@CNT-C,,,

j (mA cm™)
&

0.6 0.8
E (V vs.RHE)

Fig. S11. L uRges o -N@CNT-C8¢0, and acid-Co-N@CNT-Csgoo in O»-saturated 0.1 M

KOHMygo
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Fig. S12. TGA curves of Co-N@CNT-Csoo under flowing Air.
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