留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年  第31卷  第3期

Graphical Contents
2016, 31(3): .
摘要(50) PDF(14)
摘要:
二维碳质材料的制备和应用
汤艳萍, 徐庆, 唐睿智, 张帆
2016, 31(3): 213-231.
摘要(814) PDF(1929)
摘要:
二维碳质材料具有碳质材料来源广泛、化学稳定性高、电学性质可调控等优点,而且二维构型的表面效应、小尺寸效应等使其具有特殊的光、电、热、力学和几何性能。本文对石墨烯及其衍生物、多孔炭片、炭布材料等二维碳质材料的制备进行了综述,并且概述了二维碳质材料在污染物吸附、检测和传感、锂离子电池、电容器、催化等领域中的应用,讨论了其发展中的挑战和展望。
基于微孔有机聚合物的多孔炭合成
王科伟, 谭必恩
2016, 31(3): 232-242.
摘要(792) PDF(1111)
摘要:
近年来,多孔炭材料因比表面积高、孔结构丰富、化学稳定性高以及导电性好等优点已成为化学、生物以及材料等领域的研究热点,被广泛应用于催化、药物负载与缓释和电化学等方面。微孔有机聚合物(Micropore organic polymers, MOPs)作为一种近年来发展迅猛的新型多孔材料,具有合成方法多样性、化学和物理性质稳定、孔结构可调、较高的比表面积以及表面易修饰等特性,较传统多孔材料(如沸石,硅胶等)具有更好的应用前景。同时,MOPs材料的热稳定性好,高温炭化可得到孔结构可调的多孔炭材料,这进一步拓展了MOPs材料的应用。本文综述了MOPs作为前驱体,利用煅烧制备多孔材料的方法及其应用,并对MOPs对多孔炭的理性设计进行了展望。
多孔碳质材料在氧还原电催化中的应用
杨慧聪, 梁骥, 王振兴, 安百钢, 李峰
2016, 31(3): 243-263.
摘要(824) PDF(1251)
摘要:
氧气的电化学还原(氧还原)反应是多种能量存储与转化装置中的关键电化学步骤,氧还原的难易程度决定了这些装置综合性能的好坏。氧还原反应自身的动力学过程缓慢,通常需要催化剂来提高反应速率。碳质材料在其中发挥着非常重要的作用,常见氧还原催化剂铂、钯等贵金属及近期出现的多种非贵金属,大多是负载于各种纳米碳质材料或直接利用掺杂纳米碳质材料作为催化剂,包括各种多孔炭或基于多孔炭的材料。因此,多孔碳质材料的发展对于氧还原催化剂的研究与发展起到了促进作用。本文从多孔碳质材料制备手段出发,论述了多孔碳质材料在氧还原反应的作用,涵盖了贵金属催化剂载体到非(贵)金属催化剂等方面的研究进展。与此同时,对新型碳质材料调控多孔结构的方法加以阐述,并对未来新型多孔碳质材料用于氧还原催化剂的前景和方向进行了展望。
钠-空气电池用碳基空气电极研究进展
刘山, 柳丝丝, 罗加严
2016, 31(3): 264-270.
摘要(411) PDF(841)
摘要:
钠-空气电池具有能量密度高、放电平台高(2.3 V)及钠储量丰富等优点,被认为是一种极具发展前景的储能技术。然而,钠-空气电池仍存在诸多问题。本文综述了钠-空气电池近年来的发展状况,着重探讨了炭基空气电极的研究进展,并对钠-空气电池未来发展方向进行了展望。
层次孔炭气凝胶的表面改性及吸附特性
蔡力锋, 傅明连, 陈鹭义, 符若文, 吴丁财
2016, 31(3): 271-276.
摘要(582) PDF(672)
摘要:
采用浓硝酸对层次孔炭气凝胶(HPCA-1)进行表面改性,制备了新型表面改性层次孔炭气凝胶(mHPCA-1),并进一步研究了mHPCA-1对酸性品红(AF)的吸附行为。结果表明,浓硝酸表面改性对炭气凝胶的纳米形貌和孔结构影响不大,但可以明显提高炭气凝胶的表面含氧官能团数量,从而优化层次孔表面化学性质,使得mHPCA-1对AF表现出更高的吸附量。mHPCA-1对AF的等温吸附过程符合Langmuir方程,其对AF的吸附属于单分子层吸附,最大吸附量可达191.57 mg·g-1,明显高于HPCA-1(120.92 mg·g-1)。吸附动力学结果证实了浓硝酸表面改性可以显著提升层次孔炭气凝胶对AF的吸附量和吸附速率,且吸附动力学符合Langmuir速率方程。
织构可控多孔炭纳米纤维的制备及其室温脱除低浓度氮氧化物
王明玺, 郭泽宇, 黄正宏, 康飞宇
2016, 31(3): 277-286.
摘要(418) PDF(678)
摘要:
采用静电纺丝法制备聚丙烯腈纤维,经预氧化、炭化和活化,得到具有孔径发达和比表面积大的多孔炭纳米纤维。控制纺丝液的浓度和活化条件,可制得织构可控的多孔炭纳米纤维。将所制备的纤维用于室温低浓度NO(20 ppm)的脱除,脱除效果主要基于吸附和催化氧化作用。纤维的织构影响其脱除NO的性能,直径越小、微孔越丰富、比表面积越大,对NO的吸附与催化氧化效果越好。当NO进口浓度为20 ppm时,在900℃下活化的平均直径为175 nm的多孔炭纳米纤维脱除NO率可高达29.7%。
氮掺杂活性炭及其载铂催化剂氧还原催化活性
李莉香, 张砚秋, 孙盼松, 安百钢, 邢天宇, 宋仁峰
2016, 31(3): 287-292.
摘要(514) PDF(964)
摘要:
采用化学原位聚合法制备聚吡咯/活性炭(AC)复合物,在惰性气氛进行热处理,制备了氮掺杂活性炭(NAC)。利用化学浸渍还原法制备AC和NAC载铂催化剂,并对比分析他们的氧还原催化性能。氮掺杂处理明显降低了活性炭的比表面积,但因其改善了活性炭水分散性和表面活性,铂在NAC表面沉积和分布较在AC载体表面更均匀。尤其经900℃炭化处理获得的氮掺杂活性炭NAC900,源于其微孔的高比表面积和含氮官能团共同作用,使铂粒子多以尺寸小于5 nm的粒子均匀沉积分布于载体表面,且铂担载量高。循环伏安曲线分析表明,与活性炭载铂催化剂(Pt-AC)相比,氮掺杂活性炭载铂催化剂(Pt-NAC900)的氧还原峰电位更正,氧还原峰电流为前者两倍,且峰电流随循环次数的衰减更低。结果表明,通过对传统炭材料活性炭进行氮掺杂处理,能够增强其载铂催化剂氧还原催化性能。
微波辅助加热乙二醇法制备PtSn/CNT催化剂:pH值对其结构和电氧化甲醇性能的影响
黎海超, 陈水挟, 李启汉, 刘风雷
2016, 31(3): 293-300.
摘要(383) PDF(808)
摘要:
采用微波辅助加热乙二醇法制备了碳纳米管(CNTs)负载的PtSn双组份催化剂。采用原子吸收光谱,X射线衍射仪和电子透射显微镜对产物进行了表征。结果表明,含金属离子前驱体的乙二醇溶液的pH值对产物的金属催化剂负载量、合金化程度和PtSn粒子的形态有显著的影响。在pH值为5时能得到组分配比为原始设计值的PtSn/CNT催化剂。在pH值2~7的范围内纳米粒子的尺寸较小,随着pH值的进一步提高,纳米粒子直径变大且发生团聚。电化学测试表明在pH值为5时得到的PtSn/CNT催化剂对甲醇电化学氧化具有最佳的催化作用。合适的金属负载比例和良好的纳米颗粒形状和尺寸分布控制是得到优异的催化性能的主要原因。
中孔炭微球/酚醛树脂复合材料的力学及介电性能
周建国, 朱小磊, 张利, 乔文明, 龙东辉, 凌立成
2016, 31(3): 301-306.
摘要(740) PDF(1059)
摘要:
以间苯二酚-甲醛为前驱体、喷雾干燥法可规模制备出中孔炭微球,进一步采用聚乙烯醇对其进行表面致密化处理,再与酚醛树脂热压成型得到中孔炭微球/酚醛树脂复合材料,系统研究了复合材料的力学性能及介电性能。结果表明,所制炭微球具有较窄的粒径分布(1~10μm)、发达的中孔孔隙(孔容>3.0 cm3/g)。经表面包覆后,中孔炭微球表面致密,形成类"蛋壳"结构。当用于复合材料填料(0~10%)时,能有效的降低复合材料的密度(1.36 g/cm3至1.12 g/cm3),并显著提升复合材料的力学性能(压缩强度由106 MPa增加至168 MPa);在102~107 Hz频率下,复合材料的介电常数随着炭微球添加量的增加逐渐提高,由4.0~3.6提高至10.4~9.1。结果表明,中孔炭微球可作为新一类多功能填料,在降低复合材料密度的同时增加力学性能,并在较宽频率下具备高的介电性能,具有优异的低密度吸波基体材料的应用潜力。
碳纳米管的微观结构调节对锂空气电池电化学行为的影响
王海帆, 魏伟, 秦磊, 雷宇, 余唯, 刘如亮, 吕伟, 翟登云, 杨全红
2016, 31(3): 307-314.
摘要(681) PDF(869)
摘要:
锂空气电池的理论能量密度约是锂离子电池的10倍,因而受到研究者的广泛关注。碳质材料由于其稳定的结构和良好的导电性,目前仍作为锂空气电池的主要正极材料。通过KOH活化调节碳纳米管的表面特性和微观结构,将其作为锂空气电池正极材料,研究碳纳米管的微观结构变化对放电产物及电化学行为的影响。结果表明,当碳纳米管管壁被剥开导致大量边界原子外露,形成碳纳米管-石墨烯杂化结构,极大提高了碳纳米管正极的反应活性,放电容量和循环性能显著增加,放电产物分布均匀及颗粒减小,充电平台也显著降低。
聚苯胺复合石墨烯纳米卷的制备及其在超级电容器中的应用
郑冰娜, 高超
2016, 31(3): 315-320.
摘要(573) PDF(517)
摘要:
石墨烯纳米卷是一种具有开放式螺旋状纳米卷结构的管状石墨烯。以石墨烯纳米卷为模板,利用原位聚合的方法,将聚苯胺生长在石墨烯纳米卷表面。通过对材料形貌进行表征,发现聚苯胺均匀地分布在石墨烯纳米卷表面。分别对3种不同单体浓度的聚苯胺复合石墨烯纳米卷进行电化学性能考察,结果发现石墨烯纳米卷和聚苯胺产生的协同效应使得复合卷在继承石墨烯纳米卷良好的倍率特性同时显著地提升了比电容,在1 A/g时比电容可达320 F/g,100 A/g时仍可以保持92.1%的初始电容,为制备高比容、快速充放电的石墨烯纳米卷基超级电容器奠定了基础。
锂离子电池硅/碳复合网状整体电极的制备与性能
吴军雄, 秦显营, 梁葛萌, 韵勤柏, 贺艳兵, 康飞宇, 李宝华
2016, 31(3): 321-327.
摘要(661) PDF(1251)
摘要:
基于静电喷雾沉积技术制备了硅-纳米炭纤维-石墨烯杂化膜(Si/CNF/G),其中纳米硅颗粒包覆在多孔炭基体中,由纳米硅和多孔炭组成的二次结构被镶嵌在由纳米炭纤维和石墨烯组成的三维交联炭网络中,最终构成无粘结剂的硅/碳复合整体电极。Si/CNF/G三维杂化膜用作锂离子电池电极时,表现高的可逆比容量、长的循环寿命和良好的倍率性能。0.2 A·g-1恒定电流密度下,首次可逆比容量为957 mAh·g-1,经100圈循环容量保持率为74.4%;2 A·g-1恒定电流密度下,可逆比容量为539 mAh·g-1。多孔炭基体可有效缓冲硅的体积变化,促进形成稳定的固态电解质界面;纳米炭纤维和石墨烯构建的三维炭网络既稳定了电极的整体结构,又可为电子和离子提供快速传输通道。
不同长度的棒状有序介孔炭的双电层电容性能
刘娜, 余吕强, 陈晓红, 廖丽芳, 周继升, 马兆昆, 宋怀河
2016, 31(3): 328-335.
摘要(489) PDF(632)
摘要:
将三嵌段共聚物P123既充当结构导向剂又作为碳源,通过硫酸处理,并采用直接炭化硅/P123复合材料的方法制备出棒状有序介孔炭,避免了传统硬模板法中需要除去昂贵的表面活性剂与反复浸渍的过程。通过改变合成参数,制备出不同长度的、从一微米到几十微米变化的棒状有序介孔炭材料。采用SEM,HR-TEM,XRD与N2吸脱附等对有序介孔炭材料的形态、结构以及孔特点进行表征,并将其作为双电层电容器的电极材料进行电化学测试,以期关联形貌、结构(尤其是棒长度)与其电化学性能的关系。结果表明在这些炭材料中,最长的介孔炭具有最高的比容量170 F/g。在2000 mA/g电流密度下,具有双孔径的介孔炭表现出最高的容量保持率(92%)。
多孔CuCo2S4/石墨烯复合材料的合成及其在超级电容器上的应用
刘立乐, K. P. Annamalai, 陶有胜
2016, 31(3): 336-342.
摘要(496) PDF(861)
摘要:
采用水热法合成了纳米带状多孔CuCo2S4/石墨烯复合材料,并通过扫描电镜、透射电镜、X-射线衍射、77 K氮气吸附等方法对其进行了表征分析。该复合材料具有0.7~1.2 nm微孔和2~10 nm介孔,其总孔容为0.1 cm3·g-1。电化学性能研究表明,该材料应用于超级电容器具有良好的电化学储能性能。
吴丁财
2016, 31(3): 336-342.
摘要(55) PDF(8)
摘要:
超级电容器用高性能石油焦基多孔炭的制备及改性
谭明慧, 郑经堂, 李朋, 椿范立, 吴明铂
2016, 31(3): 343-351.
摘要(475) PDF(714)
摘要:
以石油炼制副产品石油焦为原料,采用KOH活化法制备高比面积多孔炭,通过氨水水热处理对多孔炭进行表面渗氮改性。系统考察了KOH/石油焦比例(碱/炭比)对多孔炭孔结构及电化学性能的影响。结果表明多孔炭的比表面积、孔结构和电化学性能可以通过碱/炭比有效地调控。随着碱/炭比的增大,多孔炭的孔道逐渐增大,当碱炭比为3:1时最大比表面积达到2964 m2·g-1。当碱/炭比为5:1时,多孔炭的比表面积和中孔率分别高达2842 m2·g-1和67.0%,其在50 mA·g-1电流密度下的比电容达到350 F·g-1。氨水水热处理多孔炭,可以有效地在多孔炭表面引入氮原子,从而提高了多孔炭电极的电化学性能,尤其提高其在高电流密度下的比电容值。KOH活化以及氨水水热处理为制备高性能低成本石油焦基超级电容器电极材料提供了一种简单有效的方法。
多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用
郭梦清, 黄佳琦, 孔祥屹, 彭翃杰, 税晗, 钱方圆, 朱林, 朱万诚, 张强
2016, 31(3): 352-362.
摘要(1116) PDF(726)
摘要:
碳纳米管优异的物理性质和可调的化学组成使其拥有广泛的应用前景。采用低温过程在碳骨架中引入磷原子预期带来可调的化学特性。本研究采用170℃下水热处理碳纳米管-磷酸混合物获得磷掺杂的碳纳米管。磷掺杂的碳管的磷含量为1.66%,比表面积为132 m2/g,热失重峰在纯氧环境下提升至694℃。当掺磷碳纳米管用于氧还原反应时,其起始电位为-0.20 V,电子转移数为2.60,反应电流显著高于无掺杂的碳纳米管。当其用作锂硫电池正极导电材料时,电极的起始容量为1106 mAh/g,电流密度从0.1 C提升至1 C时容量保留率为80%,100次循环的衰减率为每圈0.25%。