留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年  第38卷  第1期

2023年 1 期中文目次
2023, 38(1).
摘要(247) HTML(75) PDF(88)
摘要:
2023年 1 期英文目次
2023, 38(1): .
摘要(128) HTML(44) PDF(31)
摘要:
综合评述
面向电化学储能的多孔炭材料
刘于斯, 马超, 王开学, 陈接胜
2023, 38(1): 1-17. doi: 10.1016/S1872-5805(23)60710-3
摘要(1228) HTML(297) PDF(278)
摘要:
多孔炭材料具有质量轻、比表面积大、导电性好和稳定性高的优点,在电化学储能领域得到了广泛的应用。近几十年来,多孔炭材料的结构构筑和功能化设计取得了较大的进步。本文以多孔炭在不同储能器件中的应用发展为导向,结合多孔炭结构设计和功能化发展,综述了其在锂离子电池、锂空气电池、锂硫电池、锂负极保护、钠离子电池、钾离子电池等电化学储能器件中的研究成果和进展,最后总结了多孔炭的结构控制和功能化的策略,并展望了多孔炭材料未来研究的方向和挑战。
A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals
LIU Yu-hong, MA Zhao-kun, HE Yan, WANG Yue, ZHANG Xing-wei, SONG Huai-he, LI Cui-xia
2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X
摘要(679) HTML(254) PDF(208)
摘要:
Fibrous graphite materials are highly attractive due to their unique morphologies, high degree of orientation of their graphite microcrystallites, extremely good mechanical and conductive properties, fascinating growth mechanisms, diverse preparation methods and potential applications. This review summarizes the preparation methods, Raman spectra and the growth mechanisms of graphite whiskers, columnar carbons with cone-shaped top cones, and needle- and rod-like polyhedral crystals, and their optical, electrical and magnetic properties and applications are outlined.
Biomass-derived carbon anodes for sodium-ion batteries
HUANG Si, QIU Xue-qing, WANG Cai-wei, ZHONG Lei, ZHANG Zhi-hong, YANG Shun-sheng, SUN Shi-rong, YANG Dong-jie, ZHANG Wen-li
2023, 38(1): 40-72. doi: 10.1016/S1872-5805(23)60718-8
摘要(1918) HTML(974) PDF(624)
摘要:
Sodium-ion batteries (SIBs) have attracted tremendous attention for large-scale stationary grid energy storage. With the upcoming commercialization of SIBs in the foreseeable future, developing high-performance carbon anodes from sustainable biomass is becoming increasingly important in the preparation of cost-effective SIBs. This review summarizes advanced carbon anodes for SIBs derived from various lignocellulose biomass waste. The history of our understanding of sodium storage mechanisms in carbon anodes is first discussed to clarify their structure-performance relationships. Conventional preparation strategies including pore structure design, heteroatom doping, control of the graphitic structure, and morphology control and their effects on the sodium storage capability of biomass-derived carbon anodes are then discussed. Finally, the practical applications, future research directions and challenges for the use of biomass-derived carbon anodes for SIBs are discussed from the aspects of synthesis methods, microstructure control and production costs.
Recent progress in the research and development of natural graphite for use in thermal management, battery electrodes and the nuclear industry
DUAN Sheng-zhi, WU Xiao-wen, WANG Yi-fan, FENG Jian, HOU Shi-yu, HUANG Zheng-hong, SHEN Ke, CHEN Yu-xi, LIU Hong-bo, KANG Fei-yu
2023, 38(1): 73-95. doi: 10.1016/S1872-5805(23)60717-6
摘要(1040) HTML(582) PDF(273)
摘要:
Natural graphite has many excellent properties such as high thermal and electrical conductivities, high temperature resistance, corrosion resistance, and radiation tolerance. It is widely used in many fields such as thermal management, battery electrodes, and the nuclear industry. The carbon content is an important factor that limits the applications of natural graphite minerals, but the impurities are difficult to remove from high-grade graphite minerals. This review discusses the types of natural graphite and mineral resources, followed by a discussion of traditional graphite purification processes and new methods to obtain high-purity graphite. Recent research on the development of natural graphite for use in thermal management, battery electrodes and the nuclear industry are summarized and the future applications of natural graphite are discussed.
改性树脂炭的石墨化及应用进展
杨平军, 李铁虎, 李昊, 党阿磊, 袁磊
2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2
摘要(1095) HTML(464) PDF(289)
摘要:
树脂炭具有良好的力学、电学以及热物理性能,是广泛应用于航空、航天、能源等领域的结构功能一体化材料。树脂固有的分子结构特性导致树脂炭难石墨化,限制了树脂炭的广泛应用。本文综述了近年来改性树脂炭石墨化及应用的研究进展,系统介绍了催化剂、碳纳米材料、易石墨化共炭化剂三类树脂改性剂,可提高树脂炭的石墨化炭含量并降低其石墨化温度。其中催化剂和碳纳米材料改性剂方面的研究较多,催化剂改性剂在较低温度下(低于1400 °C)便能使树脂炭的石墨化度达74%,而碳纳米材料改性剂需要在2000 °C以上才能较明显地提高树脂炭的石墨化度。相比前两种改性剂,易石墨化的共炭化改性剂不仅能提高树脂炭的石墨化度,还能提高树脂的残炭率。在应用方面,提高树脂炭的石墨化度能提高炭/炭复合材料的导热和导电性能,也能提高超级电容器材料和二次电池电极材料的导电性能、倍率性能和功率密度。最后探讨了改性树脂炭的石墨化及应用面临的挑战和发展方向。
Recent progress in increasing the electromagnetic wave absorption of carbon-based materials
LI Wen-yi, GAO Ming-yang, MIAO Yang, WANG Xiao-min
2023, 38(1): 111-129. doi: 10.1016/S1872-5805(23)60703-6
摘要(966) HTML(473) PDF(286)
摘要:
High-performance electromagnetic wave absorbing materials (EWAMs) are expected to solve electromagnetic wave radiation problems in both the military and civil fields. The desired features of EWAMs include strong absorption over a broad bandwidth, low density, thinness, oxidation resistance, wear resistance, ability to withstand high-temperatures and high strength. Carbon-based materials, including nanostructures and composites, are attractive alternatives to EWAMs because of their unique structures and properties. We summarize recent achievements in carbon-based EWAMs, including different dimensional (0D, 1D, 2D and 3D) carbon nanostructures and various types of carbon composites (dielectric/carbon, magnetic/carbon) and hybrids. The factors affecting the absorption of electromagnetic microwaves include electrical conductivity (σ), permittivity (ε) and permeability (μ) are discussed based on the electromagnetic microwave absorption mechanisms. Representative carbon-based EWAMs and the corresponding mechanisms of improving their electromagnetic microwave absorption are highlighted and analyzed. Strategies for the modification of carbon-based EWAMs are summarized and research trends are proposed.
我国氟化碳材料的基础研究现状及发展趋势
封伟
2023, 38(1): 130-142. doi: 10.1016/S1872-5805(23)60716-4
摘要(1302) HTML(474) PDF(337)
摘要:
氟化碳(CFx)是一种由碳质材料( 如石墨、 石墨烯、碳纳米管等不同化学结构的炭材料)和氟化试剂在一定条件下发生氟化反应而形成的具有C―F键的碳衍生物,由于多样的碳骨架和可控的极性C―F键,使其具有化学稳定性、带隙可调性以及超疏水性等多种优异性能,是新型碳基材料研究热点之一。本文以氟化碳材料的结构和性质为基础,分别从化学能源、摩擦润滑和半导体等领域的应用综述了近年来我国氟化碳材料的基础研究现状和发展趋势。同时,还介绍了我国氟化碳材料的产业化进程,指出目前在民用领域受限的主要原因,提出了当前氟化碳在不同应用领域存在的问题和未来发展机遇,为氟化碳材料的进一步扩大生产和实际应用提供方向。
研究论文
Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries
NIU Jing-yi, JING De-qi, ZHANG Xing-hua, SU Wei-guo, ZHANG Shou-chun
2023, 38(1): 143-153. doi: 10.1016/S1872-5805(22)60615-2
摘要(567) HTML(263) PDF(135)
摘要:
Hollow porous carbon fibers for Li-S battery electrodes were prepared by the KOH activation of carbon prepared from hollow polyacrylonitrile fibers. The fibers had a high specific surface area of 2 491 m2·g−1, a large pore volume of 1.22 cm3·g−1 and an initial specific capacity of 330 mAh·g−1 at a current density of 1 C. To improve their electrochemical performance, the fibers were modified by treatment with hydrazine hydrate to prepare nitrogen-doped hollow porous carbon fibers with a specific surface area of 1 690 m2·g−1, a pore volume of 0.84 cm3·g−1 and a high nitrogen content of 8.81 at%. Because of the increased polarity and adsorption capacity produced by the nitrogen doping, the initial specific capacity of the fibers was increased to 420 mAh·g−1 at a current density of 1 C.
The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media
XU Xiang-xiang, ZHANG Nian-chao, WANG Jun-ying, WANG Jun-zhong
2023, 38(1): 154-161. doi: 10.1016/S1872-5805(22)60649-8
摘要(493) HTML(362) PDF(107)
摘要:
Metal-nitrogen carbon catalysts have received great attention in the field of gas-evolving electrocatalysis due to their high activity, large specific surface area and efficient gas diffusion paths. A solution of porphyrin iron, g-C3N4 and polyacrylonitrile in N,N-dimethylformamide was sonicated and electrospun into doped polyacrylonitrile nanofibers (NFs), and the NFs were then stabilized and carbonized at 900 °C to prepare Fe-N/CNF catalyst for oxygen reduction reaction (ORR). It was found that the addition of g-C3N4 to the electrospinning precursor led to the formation of abundant Fe-N species in Fe3+ and Fe2+ valence states, while Fe3C nanoparticles were formed without adding g-C3N4. Compared to Fe3C/CNF prepared without g-C3N4, the Fe-N/CNF catalyst presents an 4e improved oxygen reduction reaction activity in both alkaline and acidic media. Furthermore, as a cathode in Zn-air batteries, the Fe-N/CNF catalyst exhibits high performance with an open-circuit voltage of 1.49 V, a power density of 146 mW cm−2 and a specific capacity of 703 mAh g−1. This work suggests a way to prepare metal-nitrogen-carbon catalysts for energy-related electrocatalytic applications.
碳纳米管复合纤维素水凝胶的界面光热净水性能研究
王雪, 孙洋, 赵冠宇, 王旭珍, 邱介山
2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8
摘要(1062) HTML(788) PDF(188)
摘要:
基于低温溶剂法从大宗农林废弃物玉米芯中提取的纤维素,耦合具有优异吸光性能的碳纳米管(CNTs),构筑复合纤维素水凝胶(CNTs-CH),利用纤维素凝胶的高保水性、可降解性,以及碳纳米管的高效光热转换能力、优良的力学性能和生物相容性,将其用于太阳能驱动界面水蒸发净化领域。考察了吸光材料CNTs的不同添加量对CNTs-CH复合水凝胶的太阳能吸收率、机械性能及界面光热水蒸发效率的影响。最优条件下,CNTs添加质量百分数仅需0.2%,此CNTs-CH复合纤维素水凝胶的平均蒸发速率可达到~1.52 kg m−2 h−1,太阳能-蒸汽转换效率约为92%;在海水中连续蒸发8 h,蒸发速率可保持在1.37 kg m−2 h−1左右,且无积盐现象,净化水质远高于世界卫生组织和美国环境保护署对饮用水的标准,说明CNTs-CH抗盐性能较强。此外,CNTs-CH水凝胶在强酸/碱性水溶液体系、染料废水和重金属离子污染水体中的蒸发速率可维持为1.30~1.40 kg m−2 h−1,太阳能-蒸汽效率可达到80%~86%,对污染物及盐分截留率高达99.9%,蒸发效果稳定,说明CNTs-CH光热蒸发器在海水淡化和工业废水净化回用领域有广阔的应用前景。
An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors
DONG Si-lin, YANG Jian-xiao, CHANG Sheng-kai, SHI Kui, LIU Yue, ZOU Jia-ling, LI Jun
2023, 38(1): 173-189. doi: 10.1016/S1872-5805(22)60606-1
摘要(642) HTML(335) PDF(129)
摘要:
An innovative and efficient method for preparation of mesocarbon microbeads (MCMBs) was developed based on the dripping behavior and rheological properties of molten pitch during melt-spinning, where a string of beads was formed after the pitch was extruded from spinnerets and dropped into a receiving solvent (tetrohydrofuran or water). The pitch droplets were first carbonized, then activated by KOH or graphitized at 2800 °C to prepare A-MCMBs or G-MCMBs, respectively, and these were respectively used as the electrode materials for electric double layer capacitors (EDLCs) and lithium-ion batteries (LIBs). Results showed that both MCMB-W prepared using water as the receiving solvent and MCMB-T prepared using tetrohydrofuran as the receiving solvent had a spherical shape with sizes of 1-2 μm. A-MCMB-T had a high specific surface area (1 391 m2 g−1), micropore volume (0.55 cm3 g−1) and mesopore volume (0.24 cm3 g−1), with a 30% higher specific capacitance than an activated mesophase carbon prepared under the same conditions, and its capacitance retention was significantly improved when it was used as an electrode material for EDLCs. G-MCMB-T had a high degree of graphitization (0.895) and when it was used as an electrode material for LIBs it had a high specific capacity of 353.5 mAh g−1 after 100 cycles at 100 mA g−1. This work reports a new preparation method for MCMBs, which could be used to prepare energy storage materials.
Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries
XIA Zhi-gang, ZHANG Jing-jing, FAN Mei-qiang, LV Chun-ju, CHEN Zhi, LI Chao
2023, 38(1): 190-199. doi: 10.1016/S1872-5805(22)60596-1
摘要(486) HTML(246) PDF(112)
摘要:
Li-Se batteries have risen to prominence as promising lithium-ion batteries thanks to their ultrahigh volumetric energy density and the high electrical conductivity of Se. However, the use of Li-Se batteries is limited not only by the large volume expansion and dissolution of polyselenides in the cathodes during cycling, but also the low selenium loading. A highly effective and currently feasible approach to simultaneously tackle these problems is to position the selenium in a carbon matrix with a sufficient pore volume to accommodate the expansion while increasing the interfacial interaction between the selenium and carbon. We have synthesized a novel cathode material (Se@HPC) for Li-Se batteries of a honeycomb 3D porous carbon derived from a tartrate salt, that was impregnated with Se to produce Se-C bonds. The pore volume of the honeycomb 3D porous carbon was as high as 1.794 cm3 g−1, which allowed 65 wt% selenium to be uniformly encapsulated. Moreover, the strong chemical bonds between selenium and carbon stabilize the selenium, thus inhibiting its huge volume expansion and the dissolution of polyselenides, and promoting charge transfer during cycling. As expected, a Se@HCP cathode has excellent cyclability and a good rate performance. After 200 cycles at 0.2 C, its specific capacity remains at 561 mA h g−1, 83% of the theoretical value, and decays by only 0.058% per cycle. It also has a large capacity of 472.8 mA h g−1 under a high current density of 5 C.
A carbon catalyst doped with Co and N derived from the metal-organic framework hybrid (ZIF-8@ZIF-67) for efficient oxygen reduction reaction
ZHANG Ya-ting, LI Si-yi, ZHANG Na-na, LIN Gang, WANG Rui-qi, YANG Meng-nan, LI Ke-ke
2023, 38(1): 200-210. doi: 10.1016/S1872-5805(22)60609-7
摘要(1457) HTML(788) PDF(235)
摘要:
Carbon-based catalysts for the oxygen reduction reaction (ORR) are considered potential substitutes for the expensive platinum-based catalysts. Recently, transition metal and nitrogen co-doped carbon materials (M-N-C) have attracted much attention from researchers due to their low cost and excellent activity. A cobalt- and nitrogen-co-doped porous carbon material (Co-N@CNT-C800) was prepared by the simple one-step pyrolysis of a star fruit-like MOF hybrid (ZIF-8@ZIF-67) at 800 °C. It consisted of CNTs with substantial Co and N co-doping and had a large surface area (428 m2·g−1). It had an excellent half-wave potential and good current density in alkaline media in the ORR with values of 0.841 V and 5.07 mA·cm−2, respectively. Compared with commercial Pt/C materials it also had excellent electrochemical stability and methanol tolerance. This research provides an effective way to fabricate low cost, high activity electrocatalysts for use in energy conversion.