留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米铜@炭复合材料的绿色制备及抗菌性能

陈海峰 吴娟娟 吴明月 贾惠

陈海峰, 吴娟娟, 吴明月, 贾惠. 纳米铜@炭复合材料的绿色制备及抗菌性能. 新型炭材料, 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)60020-X
引用本文: 陈海峰, 吴娟娟, 吴明月, 贾惠. 纳米铜@炭复合材料的绿色制备及抗菌性能. 新型炭材料, 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)60020-X
CHEN Hai-feng, WU Juan-juan, WU Ming-yue, JIA Hui. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon. New Carbon Mater., 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)60020-X
Citation: CHEN Hai-feng, WU Juan-juan, WU Ming-yue, JIA Hui. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon. New Carbon Mater., 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)60020-X

纳米铜@炭复合材料的绿色制备及抗菌性能

doi: 10.1016/S1872-5805(19)60020-X
基金项目: 江苏省大学生创新创业平台培训项目(201710304157);南通市科技计划(MS12017019-1).
详细信息
    作者简介:

    陈海峰,研究生,讲师.E-mail:ahchf@126.com

    通讯作者:

    吴娟娟,博士,副教授.E-mail:woshijjw@ntu.edu.cn

  • 中图分类号: TQ33

Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon

Funds: Jiangsu Students' Platform for Innovation and Entrepreneurship Training Program (201710304157);Science and Technology Project of Nantong (MS12017019-1).
  • 摘要: 纳米铜具有高效、安全等特点成为无机抗菌材料领域的研究热点。以廉价易得的葡萄糖和氯化铜为原料,通过加热炭化、高温煅烧二步还原,成功制备纳米铜@炭基复合材料(Cu-NPs@C)。采用X-射线衍射、透射电镜和光电子能谱仪以及比表面积对复合材料中铜的价态、粒径和分散情况进行表征。结果表明,Cu-NPs@C中的纳米铜具有面心立方的晶体结构,颗粒为球型且均匀分散在炭片上,粒径范围在4~46 nm,复合材料的比表面积最大为418 m2/g。抑菌圈法和肉汤稀释法测试表明,复合材Cu-NPs@C-5对大肠杆菌(E.coli),金黄色葡萄球菌(S.aureus)及绿脓杆菌(P.aeruginosa)均具有优异的抑菌杀菌作用。Cu-NPs@C复合材料的抗菌性能体现在碳基载体具有较强的吸附性能,而起杀菌作用的主要是纳米铜。此外,碳基载体可以有效抵抗纳米铜颗粒表面的氧化,Cu-NPs@C-5在60天干燥存放后仍有较强的抗菌效果。
  • Ran X G, Wang L Y, Cao D R, et al. Synthesis characterization and in vitro biological activity of cobalt(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) schiff base complexes derived from salicylaldehyde and D, L-selenomethionine[J]. Appl Organomet Chem, 2011, 25:9-15.
    Ananth A, Dharaneedharan S, He M S, et al. Copper oxide nanomaterials:Synthesis, characterization and structure-specific antibacterial performance[J]. Chem Eng, 2015, 262:179-188.
    Kalaivani S, Kishore S R, Ganesan V, et al. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal[J]. J Mater Chem B,2014, 2:846-858.
    Mohammad H, Ashkan B, Ehsan S, et al. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications[J]. Surface and Coatings Technology, 2017, 321:171-179.
    Hegab H M, ElMekawy A, Zou L, et al. The controversial antibacterial activity of graphene-based materials[J]. Carbon, 2016, 105:362-376.
    Tang C L, Hu D M, Cao Q Q, et al. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent:Preparation, mechanism, and their antibacterial activity[J]. Applied Surface Science, 2017, 394:457-465.
    Nicoletta D V, Amalia C, Anna L I, et al. Aerosol-assisted low pressure plasma deposition of antimicrobial hybrid organic-inorganic Cu-composite thin films for food packaging applications[J]. Innovative Food Science and Emerging Technologies, 2015, 41:130-134.
    Wahid F, Wang H S, Lu Y S, et al. Preparation, characterization and antibacterial applications ofcarboxymethyl chitosan/CuO nanocomposite hydrogels[J]. International Journal of Biological Macromolecules, 2017, 101, 690-695.
    Gao F, Pang H, Xu S P, et al. Copper-based nanostructures:Promising antibacterial agents and photocatalysts[J]. Chem Commun, 2009, 3571-3573.
    Yang J G, Zhou Y L, Okamoto T, et al. Preparation of oleic acid-capped copper nanoparticles[J]. Chemistry Letters, 2006, 35:1190-1192.
    Markovi?a Z M, Matijaševi?d D M, Pavlovic V B, et al. Antibacterial potential of electrochemically exfoliated graphene sheets[J]. Journal of Colloid and Interface Science, 2017, 500:30-43.
    Xiong L, Tong Z H, Chen J J, et al. Morphology-dependent antimicrobial activity of Cu/Cu<i>xO nanoparticles[J]. Ecotoxicology, 2015, 24:2067-2072.
    Kim Y H, Lee D K, Cha H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles[J]. J Phys Chem B, 2006, 110:24923-24928.
    Dement'eva O V, Rudoy V M. Copper nanoparticles synthesized by the polyol method and their oxidation in polar dispersion media:The influence of chloride and acetate ions[J]. Colloid J, 2012, 74:668-674.
    Liu Y Y, Liu D M, Chen S Y, et al. In situ synthesis of hybrid nanocomposite with highly order arranged amorphous metallic copper nanoparticle in poly(2-hydroxyethyl methacrylate) and its potential for blood-contact uses[J]. Acta Biomater, 2008, 4:2052-2058.
    Deng D, Cheng Y, Jin Y, et al. Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution[J]. J Mater Chem, 2012, 22:23989-23995.
    Baruah D, Konwar D. Cellulose supported copper nanoparticles as a versatile and efficient catalyst for the protodecarboxylation and oxidativedecarboxylation of aromatic acids under microwave heating[J]. Catalysis Communications, 2015, 69:68-71.
    Javier S C, Heriberto E G, Gabriel A N, et al. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents[J]. Journal of Saudi Chemical Society, 2017, 21:341-348.
    Chandra S, Kumar A, Tomar P K, et al. Synthesis and characterization of copper nanoparticles by reducing agent[J]. J Saudi Chem Soc, 2014, 18:149-153.
    Khanna P K, Gaikwad S, Adhyapak P V, et al. Synthesis and characterization of copper nanoparticles[J]. Mater Lett, 2007, 61:4711-4714.
    Usman M S, Ibrahim N A, Shameli K, et al. Copper nanoparticles mediated by chitosan:Synthesis and characterization via chemical method[J]. Molecules, 2012, 17:14928-14936.
    Ayesha K, Rashid A, Younas R A, et al. Chemical reduction approach to the synthesis of copper nanoparticles[J]. Int Nano Lett, 2016, 6:21-26.
    Candy N C, Behnke J L, Strickland A D, et al. Copper based nanostrucured coatings on natural cellulose:Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen baumanni A and Mammolian cell biocompatibility in vitro[J]. Advanced Functional Materials, 2011, 21:2506-2514.
    Samavati A, Ismail A F. Antibacterial properties of copper-substituted cobalt ferritenanoparticles synthesized by co-precipitation method Alireza[J]. Particuology, 2017, 30:158-163.
    Li M, Xiang K, Luo G, et al. Preparation of monodispersed copper nanoparticles by an environmentally friendly chemical reduction[J]. Chin J Chem, 2013, 31:1285-1289.
    An Y Z, Wang C H, Miao P, et al. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms[J]. New Carbon Materials, 2018, 33(2):188-192.
    Ramyadevi J, Jeyasubramanian K, Marikani A, et al. Synthesis and antibacterial activity of copper nanoparticles[J]. Materials Letters, 2014, 71:114-116.
    Krystof D, Pavel U, Marie S, et al. Copper nanoparticles in glycerol-polyvinyl alcohol matrix:In situ preparation, stabilisation and antimicrobial activity[J]. Journal of Alloys and Compounds, 2017, 697:147-155.
    Li Y F, Liu Y Z, Liang Y, et al. Preparation of nitrogen-doped graphene/activated carboncomposite papers to enhance energy storage in supercapacitors[J]. Appl. Phys. A, 2017, 123:566.
    Lemire J A, Harrison J J, Turner R J, et al. Antimicrobial activity of metals:Mechanisms, molecular targets and applications[J]. Nat Rev Microbiol, 2013, 11:371-384.
    Li Y Y, Li B J, Wu Y H, et al. Preparation of carboxymethyl chitosan/copper composites and their antibacterial properties[J]. Materials Research Bulletin, 2013, 48:3411-3415.
    Xiong J, Wang Y, Xue Q, et al. Synthesis of highly stable dispersions of nanosized copper particles using L-ascirbic acid[J]. Green Chem, 2011, 13:900-904.
    Niasari M S, Davar F, Mir N, et al. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition[J]. Polyhedron, 2008, 27:3514-3518.
    Rehana D, Mahendiran D, Senthil K R, et al. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts[J]. Biomedicine and Pharmacotherapy, 2017, 89:1067-1077.
    Chen H F, Cao Y, Wei E Z, et al. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water[J]. Chemosphere, 2016, 146:32-39.
    Zhang B B, Song J L, Yang G Y, et al. Large-scale production of high-quality graphene using glucose and ferric chloride[J]. Chem Sci, 2014, 5:4656-4660.
    孙鹏,隋铭皓,盛力,等. 载铜多壁碳纳米管的抗菌活性研究[J]. 功能材料, 2015,46(2):02089-02094. (Sun P, Sui M H, Sheng L, et al. Antibacterial activity of copper nanoparticles supported on multi-walled carbon nanotube[J]. Journal of Functional Materials, 2015, 46(2):02089-02094.)
    Akasaka T, Watari F. Capture of bacteria by flexible carbon nanotubes[J]. Acta Biomaterialia, 2009, 5(2):607-612.
    He M, Lu L Y, Zhang J C, et al. Facile preparation of L-ascorbic acid-stabilized copper-chitosan nanocomposites with high stability and antimicrobial properties[J]. Sci Bull, 2015, 60:227-234.
  • 加载中
图(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  154
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 录用日期:  2019-09-10
  • 修回日期:  2019-07-02
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回