留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银颗粒原位生长于氧化石墨烯银盐纳米复合材料的简易合成及其抗菌性能

熊开容 梁业如 欧阳毅 吴丁财 符若文

熊开容, 梁业如, 欧阳毅, 吴丁财, 符若文. 纳米银颗粒原位生长于氧化石墨烯银盐纳米复合材料的简易合成及其抗菌性能. 新型炭材料, 2019, 34(5): 426-433. doi: 10.1016/S1872-5805(19)60024-7
引用本文: 熊开容, 梁业如, 欧阳毅, 吴丁财, 符若文. 纳米银颗粒原位生长于氧化石墨烯银盐纳米复合材料的简易合成及其抗菌性能. 新型炭材料, 2019, 34(5): 426-433. doi: 10.1016/S1872-5805(19)60024-7
XIONG Kai-rong, LIANG Ye-ru, OU-YANG Yi, WU Ding-cai, FU Ruo-wen. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: simple synthesis and their enhanced antibacterial activity. New Carbon Mater., 2019, 34(5): 426-433. doi: 10.1016/S1872-5805(19)60024-7
Citation: XIONG Kai-rong, LIANG Ye-ru, OU-YANG Yi, WU Ding-cai, FU Ruo-wen. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: simple synthesis and their enhanced antibacterial activity. New Carbon Mater., 2019, 34(5): 426-433. doi: 10.1016/S1872-5805(19)60024-7

纳米银颗粒原位生长于氧化石墨烯银盐纳米复合材料的简易合成及其抗菌性能

doi: 10.1016/S1872-5805(19)60024-7
基金项目: 国家自然科学基金项目(U1601206,51872336,51422307,51602107,51702262);国家社会科学基金项目(17BXW104);中组部青年拔尖人才支持计划项目;国家教育部科学基金项目(15YJC630141);广东特支计划科技创新青年拔尖人才(2014TQ01C337);高校基本科研业务费中山大学青年教师培育项目(18lgzd10).
详细信息
    作者简介:

    熊开容,博士.E-mail:xkr_963@163.com

    通讯作者:

    符若文,教授.E-mail:cesfrw@mail.sysu.edu.cn;吴丁财,教授.E-mail:wudc@mail.sysu.edn.cn;梁业如,教授.E-mail:liangyr@scau.edu.cn

  • 中图分类号: TB33

Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: simple synthesis and their enhanced antibacterial activity

Funds: National Natural Science Foundation of China (U1601206, 51872336, 51422307, 51602107, 51702262); National Social Science Foundation of China (17BXW104); National Program for Support of Top-notch Young Professionals, Science Foundation of Ministry of Education of China (15YJC630141); Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2014TQ01C337); Fundamental Research Funds for the Central Universities (18lgzd10).
  • 摘要: 可防治感染性疾病的先进抗菌材料一直是社会的重大需求。目前,各式各样含银纳米抗菌材料已被合成出来,并被认为可应用于许多商业产品领域中。然而,整合与创新基于纳米银的微/纳米结构,对于制备得到性能优异的抗菌剂仍颇具挑战性。基于此,利用简易的超声混合方法,成功合成了一类纳米银颗粒原位生长于氧化石墨烯银盐的纳米复合材料。通过扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱仪、热重分析仪、X-射线衍射分析仪和X-射线光电子能谱仪等现代分析手段对所得材料纳米结构进行了研究。结果表明,氧化石墨烯不仅可作为带负电荷的大分子捕获大量带正电的银离子,还可作为还原剂将银离子原位还原成纳米银粒子,由此得到了在氧化石墨烯表面同时含有均匀分散的纳米银粒子和银离子的杂化结构。这一先进结构使得所制备的纳米复合材料可充分利用银纳米粒子及氧化石墨烯银盐二者的优势,对金葡菌和大肠杆菌表现出强的抗菌活性和持久的抗菌能力,是一种高效的抗菌剂。
  • Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310.
    Fukushima K, Liu S Q, Wu H, et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity[J]. Nature Communications, 2013, 4:2861.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009, 27(1): 76-83.
    Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16248-16253.
    Zou L M, Huang Z H, Kang, F Y, et al. The study of silver-supported phenolic resin-based spherical activated carbon[J]. New Carbon Materials, 2003, 18(3): 214-218.
    Chen S X, Liu J R, Zeng H M. Comparison of the antibacterial activity of several kinds of activated silver-supporting carbon fibers[J]. New Carbon Materials, 2002, 17(1): 26-29.
    Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research, 2000, 52(4): 662-668.
    Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005, 16(10): 2346-2353.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E-coli as a model for Gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1): 177-182.
    Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602.
    Sharma V K, Yngard R A, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities[J]. Advances in Colloid and Interface Science, 2009, 145(1-2): 83-96.
    Li X, Lenhart J J. Aggregation and dissolution of silver nanoparticles in natural surface water[J]. Environmental Science & Technology, 2012, 46(10): 5378-5386.
    Sambhy V, MacBride M M, Peterson B R, et al. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials[J]. Journal of the American Chemistry Society, 2006, 128(30): 9798-9808.
    Ray S, Mohan R, Singh J K, et al. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes[J]. Journal of the American Chemistry Society, 2007, 129(48): 15042-15053.
    Zhao L Z, Wang H R, Huo K F, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32(24): 5706-5716.
    Jeon H J, Yi S C, Oh S G. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method[J]. Biomaterials, 2003, 24(27): 4921-4928.
    Ocwieja M, Adamczyk Z. Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica[J]. Langmuir, 2013, 29(11): 3546-3555.
    Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon, 2004, 42(15): 3209-3216.
    Zhang S, Fu R, Wu D, et al. Adsorption and antibacterial activity of silver-dispersed carbon aerogels[J]. Journal of Applied Polymer Science, 2006, 102(2): 1030-1037.
    Fei X, Jia M H, Du X, et al. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties[J]. Biomacromolecules, 2013, 14(12): 4483-4488.
    Xu W P, Zhang L C, Li J P, et al. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties[J]. Journal of Materials Chemistry, 2011, 21(12): 4593.
    Shen J, Shi M, LiN, et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J]. Nano Research, 2010, 3(5): 339-349.
    Ma J Z, Zhang J T, Xiong Z G, et al. Preparation, characterization and antibacterial properties of silver-modified graphene oxide[J]. Journal of Materials Chemistry, 2011, 21(10): 3350-3352.
    Ruiz O N, Fernando K A S, Wang B J, et al. Graphene oxide: A nonspecific enhancer of cellular growth[J]. ACS Nano, 2011, 5(10): 8100-8107.
    Nguyen V H, Kim B K, Jo Y L, et al. Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites[J]. Journal of Supercritical Fluids, 2012, 72: 28-35.
    Shen J F, Li T, Shi M, et al. Polyelectrolyte-assisted one-step hydrothermal synthesis of Ag-reduced graphene oxide composite and its antibacterial properties[J]. Materials Science and Engineering C, 2012, 32(7): 2042-2047.
    Jiang B J, Tian C G, Song G, et al. A novel Ag/graphene composite: Facile fabrication and enhanced antibacterial properties[J]. Journal of Materials Science, 2012, 48(5): 1980-1985.
    Tang J, Chen Q, Xu L G, et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3867-3874.
    Wang X D, Zhou N L, Wang W Y, et al. The antimicrobial properties of carboxylated graphene oxide decorated with La particles[J]. New Carbon Materials, 2012, 27(5): 385-392.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemistry Society, 1957, 80(6): 1339.
    Krishnamoorthy K, Veerapandian M, Zhang L H, et al. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation[J]. Journal of Physical Chemistry C, 2012, 116(32): 17280-17287.
    Song J, Kim H, Jang Y, et al. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11563-11568.
    Chook S W, Chia C H, Zakaria S, et al. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method[J]. Nanoscale Research Letters, 2012, 7(1):541.
    Cui J H, Hu C F, Yang Y H, et al. Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials[J]. Journal of Materials Chemistry, 2012, 22(16): 8121-8126.
    Li C Y, Wan Y Z, Wang J, et al. Antibacterial pitch-based activated carbon fiber supporting silver[J]. Carbon, 1998, 36(1-2): 61-65.
  • 加载中
图(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  188
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-29
  • 录用日期:  2019-11-04
  • 修回日期:  2019-10-02
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回