留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯氧含量对炭纤维/石墨烯/环氧树脂复合材料力学和电磁屏蔽性能的影响

李烨 刘世泰 孙健明 李爽 陈俊林 肇研

李烨, 刘世泰, 孙健明, 李爽, 陈俊林, 肇研. 石墨烯氧含量对炭纤维/石墨烯/环氧树脂复合材料力学和电磁屏蔽性能的影响. 新型炭材料, 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0
引用本文: 李烨, 刘世泰, 孙健明, 李爽, 陈俊林, 肇研. 石墨烯氧含量对炭纤维/石墨烯/环氧树脂复合材料力学和电磁屏蔽性能的影响. 新型炭材料, 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0
LI Ye, LIU Shi-tai, SUN Jian-ming, LI Shuang, CHEN Jun-lin, ZHAO Yan. Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites. New Carbon Mater., 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0
Citation: LI Ye, LIU Shi-tai, SUN Jian-ming, LI Shuang, CHEN Jun-lin, ZHAO Yan. Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites. New Carbon Mater., 2019, 34(5): 489-498. doi: 10.1016/S1872-5805(19)60026-0

石墨烯氧含量对炭纤维/石墨烯/环氧树脂复合材料力学和电磁屏蔽性能的影响

doi: 10.1016/S1872-5805(19)60026-0
详细信息
    作者简介:

    李烨,博士后.E-mail:zhuliye1101@126.com

    通讯作者:

    肇研,博士,教授.E-mail:jennyzhaoyan@buaa.edu.cn

  • 中图分类号: TQ342+.74

Effects of the oxygen content of reduced graphene oxide on the mechanical and electromagnetic interference shielding properties of carbon fiber/reduced graphene oxide-epoxy composites

  • 摘要: 采用湿法制备预浸料成型炭纤维/石墨烯/环氧树脂复合材料,研究石墨烯片层的含氧量对炭纤维/石墨烯/环氧树脂复合材料力学性能与电磁性能的影响。结果表明,部分还原石墨烯可以同时提高复合材料的力学性能与电磁屏蔽性能,并且能保持复合材料的热性能。采用直接沉积和间接沉积对石墨烯进行界面沉积,以深入地研究还原石墨烯在复合材料界面处的增强机理。单丝断裂测试结果表明,直接沉积石墨烯使得界面剪切性能降低26.3%,而间接沉积石墨烯提升21.1%界面剪切性能,且石墨烯主要通过增韧机理进行界面增强。本研究制备的炭纤维/石墨烯/环氧树脂复合材料具有优异的综合性能和广阔的应用前景。
  • Qian H, Greenhalgh E S, Shaffer M S P, et al. Carbon nanotube-based hierarchical composites: A review[J]. J Mater Chem, 2010, 20(23): 4751-4752.
    Chou T W, Gao L, Thostenson E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites[J]. Compos Sci Technol, 2010, 70(1): 1-9.
    Bekyarova E, Thostenson E T, Yu A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7): 3970-3974.
    Davis D C, Wilkerson J W, Zhu J, et al. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology[J]. Compos Struct, 2010, 92(11): 265-2.
    Yavari F, Rafiee M A, Rafiee J, et al. Dramatic increase in fatigue life in hierarchical graphene composites[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2738-2743.
    Day R J, Rodrigez J V. Investigation of the micromechanics of the microbond test[J]. Composites Science and Technology, 1998, 58(6): 907-914.
    Zhang X, Fan X, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. Acs Applied Materials & Interfaces, 2012, 4(3): 1543.
    Chen L, Jin H, Xu Z, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Materials Chemistry & Physics, 2014, 145(1-2): 186-196.
    Hadden C M, Klimek-Mcdonald D R, Pineda E J, et al. Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale Modeling and Experiments[J]. Carbon, 2015, 95:100-112.
    Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 2009, 7(3): 922-925.
    Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano 2009, 3(12): 3884-3890.
    Liu M, Duan Y, Wang Y, et al. Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites[J]. Materials & Design 2014, 53: 466-474.
    Liu Q, Zhou X, Fan X, et al. Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide[J]. Polymer-Plastics Technology and Engineering, 2012, 51(3): 251-256.
    Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphene composites[J]. Macromolecules, 2009, 42(14): 5251-5255.
    Li Y, Zhao Y, Sun J, et al. Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J]. Polymer Composites, 2016, 37(8): 2494-2502.
    Park S, An J, Potts J R, et al. Hydrazine-reduction of graphite-and graphene oxide[J]. Carbon, 2011, 49(9): 3019-3023.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
    Bekyarova E, Thostenson E T, Yu A, et al. Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites[J]. J Phys Chem C, 2007, 111(48): 17865-17871.
    Yan Z, Yuexin D, Lu Y, et al. The dispersion of SWCNTs treated by dispersing agents in glass fiber reinforced polymer composites[J]. Compos Sci Technol, 2009, 69(13): 2115-2118.
    Garcia EJ, Wardle BL, John Hart A. Joining prepreg composite interfaces with aligned carbon nanotubes[J]. Compos Part A-Appl S 2008, 39(6): 1065-1070.
    Qian H, Bismarck A, Greenhalgh ES, et al. Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level[J]. Chem Mater, 2008, 20(5): 1862-1869.
    An Q, Rider A N, Thostenson E T. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers[J]. ACS Appl Mat Interfaces, 2013, 5(6): 2022-2032.
    Lee SB, Choi O, Lee W, et al. Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers[J]. Compos Part A-Appl S, 2011, 42(4): 337-344.
    Luo YF, Zhao Y, Duan YX. Surface and wettability property analysis of CCF300 carbon fiber with different sizing or without sizing[J]. Mater Design 2011, 32(2): 941-946.
    Sun P, Zhao Y, Luo YF, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Mater Design 2011, 32(8): 4341-4347.
    Hummers Jr, Offeman RE. Preparation of graphitic oxide[J]J. Am. Chem. Soc.,1958, 80(6): 1339-1339.
    Wang Y, Zhao Y, Bao TJ, et al. Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties[J]. Appl Surf Sci,2012, 258(22): 8603-8608.
    Park S, An J, Piner RD, et al. Aqueous suspension and characterization of chemically modified graphene sheets[J]. Chem Mater, 2008, 20(21): 6592.
    Greve L, Pickett A K, Payen F. Experimental testing and phenomenological modeling of the fragmentation process of braided carbon/epoxy composite tubes under axial and oblique impact[J]. Compos Part B-Eng, 2008, 39(7-8): 1221-1232.
    Netravali A N, Henstenburg R B, Phoenix S L. Interfacial shear strength studies usingthe single-filament-composite test I: Experiments on graphite fibers in epoxy[M]. Polym Com-Posite, 1989,10(4): 226-241.
    Kislev T, Marom G, Berglund L, et al. On the nature of the opaque cylindrical regions formed at fiber break sites in a fragmentation test[J]. Adv Compos Mater, 2002, 11(1): 7-13.
    Botelho E C, Pardini L C, Rezende M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. J Adv Mater, 2006, 41(21): 7111-7118.
    Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals: Copper/tungsten and copper/molybdenum[J]. J Mech Phys Solids, 1965, 13(6): 329-350.
    Khalili A, Kromp K. Statistical properties of Weibull estimators[J]. J Mater Sci 1991, 26: 6741-6752.
    Singh A P, Gupta B K, Mishra M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96.
    Ohlan A, Singh K, Chandra A, et al. Microwave absorption behavior of core-shell structured poly (3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites[J]. ACS applied materials & interfaces, 2010, 2(3): 927-933.
    Singh A P, Garg P, Alam F, et al. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide,γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band[J]. Carbon, 2012, 50(10): 3868-3875.
    Zhamu A, Hou Y, Zhong W H, et al. Properties of a reactive-graphitic-carbon-nanofibers-reinforced epoxy[J]. Polyn Composite, 2007, 28(5): 605-611.
    Wen B, Wang X X, Cao W Q, et al. Reduced graphene oxides:the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world[J]. Nanoscale, 2014, 6(11): 5754-5761.
  • 加载中
图(1)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  176
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 录用日期:  2019-11-04
  • 修回日期:  2019-09-02
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回