留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管载钴基纳米材料的制备:一种优异的电催化析氢活性材料

夏霁 李绍敏 高森 谢松 刘昊

夏霁, 李绍敏, 高森, 谢松, 刘昊. 碳纳米管载钴基纳米材料的制备:一种优异的电催化析氢活性材料. 新型炭材料, 2020, 35(1): 87-96. doi: 10.1016/S1872-5805(20)60477-2
引用本文: 夏霁, 李绍敏, 高森, 谢松, 刘昊. 碳纳米管载钴基纳米材料的制备:一种优异的电催化析氢活性材料. 新型炭材料, 2020, 35(1): 87-96. doi: 10.1016/S1872-5805(20)60477-2
XIA Ji, LI Shao-min, GAO Sen, XIE Song, LIU Hao. Preparation of CoNiP nanoparticles supported on nitrogen-doped carbon nanotubes as high performance electrocatalysts for the hydrogen evolution reaction. New Carbon Mater., 2020, 35(1): 87-96. doi: 10.1016/S1872-5805(20)60477-2
Citation: XIA Ji, LI Shao-min, GAO Sen, XIE Song, LIU Hao. Preparation of CoNiP nanoparticles supported on nitrogen-doped carbon nanotubes as high performance electrocatalysts for the hydrogen evolution reaction. New Carbon Mater., 2020, 35(1): 87-96. doi: 10.1016/S1872-5805(20)60477-2

碳纳米管载钴基纳米材料的制备:一种优异的电催化析氢活性材料

doi: 10.1016/S1872-5805(20)60477-2
基金项目: 四川省应用基础研究重点项目(2017JY0083);中国博士后科学基金(2015M582572).
详细信息
    作者简介:

    夏霁,硕士.E-mail:mxiaji@sina.com

    通讯作者:

    谢松,博士,副研究员.E-mail:xiesongam@163.com;刘昊,博士,研究员.E-mail:mliuhao@gmail.com

  • 中图分类号: TB333.2+1

Preparation of CoNiP nanoparticles supported on nitrogen-doped carbon nanotubes as high performance electrocatalysts for the hydrogen evolution reaction

Funds: Key Program of Application & Foundation of Science & Technology Department of Sichuan Province (2017JY0083); China Postdoctoral Science Foundation (2015M582572).
  • 摘要: 在高效过渡金属磷化物催化剂中,钴镍磷(CoNiP)以其优异的析氢催化活性,被认为是最有可能在将来替代贵重金属铂的一类催化剂。采用一种简单的工业浸渍法和两步煅烧法制备了在氮掺杂碳纳米管上(NCNTs)均匀分散的CoNiP纳米颗粒,获得了具有高效析氢活性的催化材料(CoNiP/NCNTs),该材料具有较低的过电位和良好的析氢稳定性等优点。在磷化物的合成过程中,磷源加入的量是影响其性能至关重要的因素。实验通过改变磷化过程中加入次磷酸钠的量考察了磷源含量对材料催化性能的影响。经过优化后的CoNiP/NCNTs纳米材料,在0.5 mol/L的硫酸溶液中具有44 mV的初始过电位,并且在电流密度为10 mA cm-2的时候,过电位仅为75 mV。经过24 h的稳定性测试,电位仅下降6 mV。因此,实验制备的催化材料具有优异的析氢催化性能,在工业产氢领域具有很好的应用潜力。
  • Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861):332.
    Chiarello G L, Dozzi M V, Selli E. TiO2-based materials for photocatalytic hydrogen production[J]. Journal of energy Chemistry, 2017, 26(2):250-258.
    Kulkarni A K, Sethi Y A, Panmand R P, et al. Mesoporous cadmium bismuth niobate (CdBi2Nb2O9) nanospheres for hydrogen generation under visible light[J]. Journal of energy Chemistry, 2017, 26(3):433-439.
    Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7:13638.
    Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8):2060-2086.
    Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells[J]. Chemical reviews, 2010, 110(11):6446-6473.
    Jin H, Wang J, Su D, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7):2688-2694.
    Ma F X, Wu H B, Xia B Y, et al. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production[J]. Angewandte Chemie, 2015, 127(51):15615-15619.
    Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25):9267-9270.
    Popczun E J, Read C G, Roske C W, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles[J]. Angewandte Chemie International Edition, 2014, 53(21):5427-5430.
    Zhang C T, Pu Z H, Amiinu I S, et al. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions[J]. Nanoscale, 2018, 10(6):2902-2907.
    Xiao P, Sk M A, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy & Environmental Science, 2014, 7(8):2624-2629.
    Lin C, Gao Z, Yang J, et al. Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(15):6387-6392.
    Liu Q, Tian J, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals:A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angewandte Chemie International Edition, 2014, 53(26):6710-6714.
    Kibsgaard J, Tasi C, Chan K, et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy & Environment Science,2015, 8(10):3022-3029.
    Pan Y, Chen Y, Lin Y, et al. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(38):14675-14686.
    Tian J, Liu Q, ASIRI A M. Self-supported nanoporous cobalt phosphide nanowire arrays:An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. Journal of the American Chemical Society, 2014, 136(21):7587-7590.
    Gu S, Du H, ASIRI A M, et al. Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode[J]. Physical Chemistry Chemical Physics, 2014, 16(32):16909-16913.
    Wu J, Liu W W, Wu Y X, et al. Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1-x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 203:21-29.
    Zhang H, Liu X, Wang R, et al. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 274:1063-1069.
    Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials:Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6):1529-1541.
    Wu J, Guo P, Mi R, et al. Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(29):15331-15338.
    Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical review B, 2000, 61(20):14095.
    Wang J, Yang W, Liu J. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting[J]. Journal of Materials Chemistry A, 2016, 4(13):4686-4690.
    Yousaf A B, Imran M, Imran M, et al. Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid[J]. Catalysis Science & Technology, 2016, 6(13):4794-4801.
    Yang X, Lu A, Zhu Y, et al. CoP nanosheet assembly grown on carbon cloth:A highly efficient electrocatalyst for hydrogen generation[J]. Nano Energy, 2015, 15:634-641.
    Jin Z, Li P, Xiao D. Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting[J]. Green Chemistry, 2016, 18(6):1459-1464.
    Zhou L, Jiang S, Liu Y, et al. Ultrathin CoNiP@layered double hydroxides core-shell nanosheets arrays for largely enhanced overall water splitting[J]. ACS Applied Energy Materials, 2018, 1(2):623-631.
    Zhang J, Xiao W, Xi P, et al. Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies[J]. ACS Energy Letters, 2017, 2(5):1022-1028.
    Zhang H, Li Y, Zhang G, et al. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(12):6306-6310.
    Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni:a review[J]. ACS Catalysis, 2016, 6(12):8069-8097.
  • 加载中
图(1)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  279
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-03
  • 录用日期:  2020-04-02
  • 修回日期:  2019-12-30
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回