留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温CVD法制备石墨烯的研究进展

王佳斌 任壮 侯莹 闫晓丽 刘培植 张华 章海霞 郭俊杰

王佳斌, 任壮, 侯莹, 闫晓丽, 刘培植, 张华, 章海霞, 郭俊杰. 低温CVD法制备石墨烯的研究进展. 新型炭材料, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
引用本文: 王佳斌, 任壮, 侯莹, 闫晓丽, 刘培植, 张华, 章海霞, 郭俊杰. 低温CVD法制备石墨烯的研究进展. 新型炭材料, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
WANG Jia-bin, REN Zhuang, HOU Ying, YAN Xiao-li, LIU Pei-zhi, ZHANG Hua, ZHANG Hai-xia, GUO Jun-jie. A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater., 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
Citation: WANG Jia-bin, REN Zhuang, HOU Ying, YAN Xiao-li, LIU Pei-zhi, ZHANG Hua, ZHANG Hai-xia, GUO Jun-jie. A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater., 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X

低温CVD法制备石墨烯的研究进展

doi: 10.1016/S1872-5805(20)60484-X
基金项目: 国家自然科学基金(51701137,51703150);山西省自然科学基金(201701D121043);山西省高等学校科技创新项目(2019L0253).
详细信息
    通讯作者:

    张华.E-mail:zhanghua01@tyut.edu.cn;章海霞.E-mail:zhanghaixia@tyut.edu.cn;郭俊杰.E-mail:guojunjie@tyut.edu.cn

  • 中图分类号: TQ127.1+1

A review of graphene synthesis at low temperatures by CVD methods

Funds: National Natural Science Foundation of China(51701137, 51703150), Natural Science Foundation of Shanxi Province(201701D121043), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (2019L0253).
  • 摘要: 石墨烯是一种由sp2杂化碳原子组成的二维碳纳米材料。由于其特殊的性质,在世界范围内引起了广泛的关注和研究。化学气相沉积法(CVD)是制备石墨烯最有效、最常用的方法。然而,传统的CVD石墨烯生长温度非常高(1 000℃),这不仅使得石墨烯制备成本高,而且限制了其在某些领域的应用。因此,低温下石墨烯的合成是目前研究者关注的焦点。前驱体类型(气态、液态、固态)和衬底类型(过渡金属、合金、介质衬底)是影响石墨烯合成温度的重要因素。本文将从以上几个方面对低温条件下CVD合成石墨烯的研究结果进行综述。
  • Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8):2458-2462.
    Li C, Shi G. Three-dimensional graphene architectures[J]. Nanoscale, 2012, 4(18):5549-5563.
    Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12):4863-4868.
    Yang K, Zhang S, Zhang G, et al. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 2010, 10(9):3318-3323.
    Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33):10876-+.
    Li X, Colombo L, Ruoff R S. Synthesis of graphene films on copper foils by chemical vapor deposition[J]. Advanced Materials, 2016, 28(29):6247-6252.
    Li X, Magnuson C W, Venugopal A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process[J]. Nano Letters, 2010, 10(11):4328-4334.
    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8):574-578.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials, 2009, 8(3):203-207.
    Ruan G, Sun Z, Peng Z, et al. Growth of graphene from food, insects, and waste[J]. ACS Nano, 2011, 5(9):7601-7607.
    Sharma S, Kalita G, Hirano R, et al. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition[J]. Carbon, 2014, 72:66-73.
    Reina A, Thiele S, Jia X, et al. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J]. Nano Research, 2010, 2(6):509-516.
    Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12):297-322.
    Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.
    Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(1):30-35.
    Li X, Cai W, Jung I, et al. Synthesis, characterization, and properties of large-area graphene films[J]. ECS Transactions, 2009, 19(5):41-+.
    Zhu M, Du Z, Yin Z, et al. Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(1):502-510.
    Mafra D L, Olmos-Asar J A, Negreiros F R, et al. Ambient-pressure CVD of graphene on low-index Ni surfaces using methane:a combined experimental and first-principles study[J]. Physical Review Materials, 2018, 2(7).
    Chaitoglou S, Bertran E. Effect of temperature on graphene grown by chemical vapor deposition[J]. Journal of Materials Science, 2017, 52(13):8348-8356.
    Rybin M G, Kondrashov I I, Pozharov A S, et al. In situ control of CVD synthesis of graphene film on nickel foil[J]. Physica Status Solidi (B), 2018, 255(1):1700414.
    Naghdi S, Nešovi? K, Miškovi?-Stankovi? V, et al. Comprehensive electrochemical study on corrosion performance of graphene coatings deposited by chemical vapour deposition at atmospheric pressure on platinum-coated molybdenum foil[J]. Corrosion Science, 2018, 130:31-44.
    Chen C-S, Hsieh C-K. Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition[J]. Thin Solid Films, 2015, 584:265-269.
    Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics:PCCP, 2011, 13(46):20836-20843.
    Li Z, Wu P, Wang C, et al. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources[J]. ACS Nano, 2011, 5(4):3385-3390.
    Kang C, Jung D H, Lee J S. Atmospheric pressure chemical vapor deposition of graphene using a liquid benzene precursor[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(11):9098-9103.
    Kim B J, Nasir T, Choi J-Y. Direct growth of graphene at low temperature for future device applications[J]. Journal of the Korean Ceramic Society, 2018, 55(3):203-223.
    Naghdi S, Rhee K Y, Park S J. A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition:Low temperature growth[J]. Carbon, 2018, 127:1-12.
    Kairi M I, Khavarian M, Bakar S A, et al. Recent trends in graphene materials synthesized by CVD with various carbon precursors[J]. Journal of Materials Science, 2017, 53(2):851-879.
    Lee K, Ye J. Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate[J]. Carbon, 2016, 100:441-449.
    Sun X, Lin L, Sun L, et al. Low-temperature and rapid growth of large single-crystalline graphene with ethane[J]. Small, 2018, 14(3).
    Weatherup R S, Dlubak B, Hofmann S. Kinetic control of catalytic CVD for high-quality graphene at low temperatures[J]. ACS Nano, 2012, 6(11):9996-10003.
    Martin M B, Dlubak B, Weatherup R S, et al. Protecting nickel with graphene spin-filtering membranes:a single layer is enough[J]. Applied Physics Letters, 2015, 107(1):012408.
    Zhang B, Lee W H, Piner R, et al. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils[J]. ACS Nano, 2012, 6(3):2471-2476.
    Zhang J, Li J, Wang Z, et al. Low-temperature growth of large-area heteroatom-doped graphene film[J]. Chemistry of Materials, 2014, 26(7):2460-2466.
    Jang J, Son M, Chung S, et al. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure[J]. Scientific Reports, 2015, 5:17955.
    Choubak S, Biron M, Levesque P L, et al. No graphene etching in purified hydrogen[J]. The Journal of Physical Chemistry Letters, 2013, 4(7):1100-1103.
    Dransfield T J, Perkins K K, Donahue N M, et al. Temperature and pressure dependent kinetics of the gas-phase reaction of the hydroxyl radical with nitrogen dioxide[J]. Geophysical Research Letters, 1999, 26(6):687-690.
    Guermoune A, Chari T, Popescu F, et al. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors[J]. Carbon, 2011, 49(13):4204-4210.
    Miyata Y, Kamon K, Ohashi K, et al. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling[J]. Applied Physics Letters, 2010, 96(26):263105.
    Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323):549-552.
    Weatherup R S, Baehtz C, Dlubak B, et al. Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources[J]. Nano Letters, 2013, 13(10):4624-4631.
    Lee E, Lee H C, Jo S B, et al. Heterogeneous solid carbon source-assisted growth of high-quality graphene via CVD at low temperatures[J]. Advanced Functional Materials, 2016, 26(4):562-568.
    Gan X, Zhou H, Zhu B, et al. A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils[J]. Carbon, 2012, 50(1):306-310.
    Choi J H, Li Z, Cui P, et al. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force[J]. Scientific Reports, 2013, 3:1925.
    Sutter P, Sadowski J T, Sutter E. Graphene on Pt(111):growth and substrate interaction[J]. Physical Review B, 2009, 80(24).
    Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature Communications, 2012, 3:699.
    Kwon S-Y, Ciobanu C V, Petrova V, et al. Growth of semiconducting graphene on palladium[J]. Nano Letters, 2009, 9(12):3985-3990.
    Zeller P, Weinl M, Speck F, et al. Single crystalline metal films as substrates for graphene growth[J]. Annalen der Physik, 2017, 529(11):1700023.
    Park H J, Meyer J, Roth S, et al. Growth and properties of few-layer graphene prepared by chemical vapor deposition[J]. Carbon, 2010, 48(4):1088-1094.
    Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru(0001)[J]. Advanced Materials, 2009, 21(27):2739-2739.
    Gao J, Zhao J, Ding F. Transition metal surface passivation induced graphene edge reconstruction[J]. Journal of the American Chemical Society, 2012, 134(14):6204-6209.
    Wang B, Zhang Y, Chen Z, et al. High quality graphene grown on single-crystal Mo(110) thin films[J]. Materials Letters, 2013, 93:165-168.
    Xue Y, Wu B, Guo Y, et al. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition[J]. Nano Research, 2011, 4(12):1208-1214.
    Fu Z, Zhang Y, Yang Z. Growth mechanism and controllable synthesis of graphene on Cu-Ni alloy surface in the initial growth stages[J]. Physics Letters A, 2015, 379(20-21):1361-1365.
    Tyagi P, Robinson Z R, Munson A, et al. Characterization of graphene films grown on CuNi foil substrates[J]. Surface Science, 2015, 634:16-24.
    Weatherup R S, Bayer B C, Blume R, et al. In situ characterization of alloy catalysts for low-temperature graphene growth[J]. Nano Letters, 2011, 11(10):4154-4160.
    Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12):4268-4272.
    Ago H, Ogawa Y, Tsuji M, et al. Catalytic growth of graphene:toward large-area single-crystalline graphene[J]. The Journal of Physical Chemistry Letters, 2012, 3(16):2228-2236.
    Zheng L, Cheng X, Ye P, et al. Decreasing graphene synthesis temperature by catalytic metal engineering and thermal processing[J]. RSC Advances, 2018, 8(3):1477-1480.
    Yoon H, Shin D S, Kim T G, et al. Facile synthesis of graphene on Cu nanowires via low-temperature thermal CVD for the transparent conductive electrode[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13888-13896.
    Kumar A, Khan S, Zulfequar M, et al. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD[J]. Applied Surface Science, 2017, 402:161-167.
    Chan S-H, Chen S-H, Lin W-T, et al. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition[J]. Nanoscale Research Letters, 2013, 8.
    Addou R, Dahal A, Sutter P, et al. Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition[J]. Applied Physics Letters, 2012, 100(2):021601.
    Weatherup R S, Amara H, Blume R, et al. Interdependency of subsurface carbon distribution and graphene-catalyst interaction[J]. Journal of the American Chemical Society, 2014, 136(39):13698-13708.
    Martinez-Gordillo R, Varvenne C, Amara H, et al. Ni2C surface carbide to catalyze low-temperature graphene growth[J]. Physical Review B, 2018, 97(20).
    Cui T, Lv R, Huang Z-H, et al. Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells[J]. Nanoscale Research Letters, 2012, 7.
    Qi J, Zhang L, Cao J, et al. Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition[J]. Chinese Science Bulletin, 2012, 57(23):3040-3044.
    Kim J, Ishihara M, Koga Y, et al. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition[J]. Applied Physics Letters, 2011, 98(9):091502.
    Yamada T, Ishihara M, Kim J, et al. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature[J]. Carbon, 2012, 50(7):2615-2619.
    Scott A, Dianat A, Börrnert F, et al. The catalytic potential of high-k dielectrics for graphene formation[J]. Applied Physics Letters, 2011, 98(7):073110.
    Liu X, Lin T, Zhou M, et al. A novel method for direct growth of a few-layer graphene on Al2O3 film[J]. Carbon, 2014, 71:20-26.
    Kwak J, Chu J H, Choi J K, et al. Near room-temperature synthesis of transfer-free graphene films[J]. Nature Communications, 2012, 3:645.
    Yan Z, Peng Z, Tour J M. Chemical vapor deposition of graphene single crystals[J]. Accounts of Chemical Research, 2014, 47(4):1327-1337.
    Chen J, Guo Y, Wen Y, et al. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J]. Advanced Materials, 2013, 25(7):992-997.
    Zhuo Q-Q, Wang Q, Zhang Y-P, et al. Transfer-free synthesis of doped and patterned graphene films[J]. ACS Nano, 2015, 9(1):594-601.
    Ruemmeli M H, Bachmatiuk A, Scott A, et al. Direct low-temperature nanographene CVD synthesis over a dielectric insulator[J]. ACS Nano, 2010, 4(7):4206-4210.
    Zhang L, Shi Z, Wang Y, et al. Catalyst-free growth of nanographene films on various substrates[J]. Nano Research, 2010, 4(3):315-321.
    Yang W, He C, Zhang L, et al. Growth, characterization, and properties of nanographene[J]. Small, 2012, 8(9):1429-1435.
    Wei D, Lu Y, Han C, et al. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices[J]. Angewandte Chemie, 2013, 52(52):14121-14126.
    Adhikari S, Aryal H R, Uchida H, et al. Catalyst-free growth of graphene by microwave surface wave plasma chemical vapor deposition at low temperature[J]. Journal of Materials Science and Chemical Engineering, 2016, 04(03):10-14.
    Ma Y, Jang H, Kim S J, et al. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process[J]. Nanoscale Research Letters, 2015, 10(1):1019.
    Munoz R, Gomez-Aleixandre C. Fast and non-catalytic growth of transparent and conductive graphene-like carbon films on glass at low temperature[J]. Journal of Physics D-Applied Physics, 2014, 47(4).
    Chen Y-Z, Medina H, Tsai H-W, et al. Low temperature growth of graphene on glass by carbon-enclosed chemical vapor deposition process and its application as transparent electrode[J]. Chemistry of Materials, 2015, 27(5):1646-1655.
  • 加载中
图(1)
计量
  • 文章访问数:  1150
  • HTML全文浏览量:  308
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回