留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废弃棉纤维、粘胶纤维和微晶纤维素水热炭化制备炭微球的对比研究

张永芳 戴晋明 郭红 史晟 阎智锋 侯文生

张永芳, 戴晋明, 郭红, 史晟, 阎智锋, 侯文生. 废弃棉纤维、粘胶纤维和微晶纤维素水热炭化制备炭微球的对比研究. 新型炭材料, 2020, 35(3): 286-294. doi: 10.1016/S1872-5805(20)60490-5
引用本文: 张永芳, 戴晋明, 郭红, 史晟, 阎智锋, 侯文生. 废弃棉纤维、粘胶纤维和微晶纤维素水热炭化制备炭微球的对比研究. 新型炭材料, 2020, 35(3): 286-294. doi: 10.1016/S1872-5805(20)60490-5
ZHANG Yong-fang, DAI Jin-ming, GUO Hong, SHI Sheng, YAN Zhi-feng, HOU Wen-sheng. A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel. New Carbon Mater., 2020, 35(3): 286-294. doi: 10.1016/S1872-5805(20)60490-5
Citation: ZHANG Yong-fang, DAI Jin-ming, GUO Hong, SHI Sheng, YAN Zhi-feng, HOU Wen-sheng. A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel. New Carbon Mater., 2020, 35(3): 286-294. doi: 10.1016/S1872-5805(20)60490-5

废弃棉纤维、粘胶纤维和微晶纤维素水热炭化制备炭微球的对比研究

doi: 10.1016/S1872-5805(20)60490-5
基金项目: 国家自然科学基金(51703153).
详细信息
    作者简介:

    张永芳,博士研究生.E-mail:zyfzyflyf@163.com

    通讯作者:

    侯文生,博士,教授.E-mail:wensheng_hou@163.com

  • 中图分类号: TQ127.1+1

A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel

Funds: National Natural Science Foundation of China(51703153).
  • 摘要: 选择废弃棉纤维和粘胶纤维两种纺织纤维作为水热炭化原料,并以微晶纤维素为模型底物进行对比,研究原料结构对水热炭化条件及产物的影响。结果表明,高结晶度的棉纤维(60.35%)和微晶纤维素(60.24%)制备炭微球的最佳条件分别是330℃,6 h,0.15% CuSO4和310℃,6 h,0.10% CuSO4,而低结晶度(34.31%)的粘胶纤维的最佳条件为260℃,8 h。结晶度越低,水热炭化条件越温和,而聚合度对其影响不显著。采用SEM、XRD、FTIR、TG和EDS对炭化产物进行表征,结果表明,不同原料合成的炭微球具有类似的无定型结构和丰富的官能团,但棉纤维和微晶纤维素合成的炭微球具有更高的碳含量和热稳定性,这可能是更高的水热炭化温度所致。因此,纤维素结晶度是影响其水热炭化合成炭微球的重要因素。
  • Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9):2281-2289.
    Jeihanipour A, Karimi K, Niklasson C, et al.A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Manag, 2010, 30(12):2504-2509.
    Kumar S, Kothari U, Kong L, et al. Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres[J]. Biomass and Bioenergy, 2011, 35(2):956-968.
    Lu J J, Hamouda H. Current status of fiber waste recycling and its future[J]. Advanced Materials Research, 2014, 878:122-131.
    Pavlovic I, Knez Z, Skerget M. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water:a review of fundamentals, mechanisms, and state of research[J]. J Agric Food Chem, 2013, 61(34):8003-25.
    Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14):2211-2214.
    Xu Y J, Xia M S, Jiang Y S, et al. Opal promotes hydrothermal carbonization of hydroxypropyl methyl cellulose and formation of carbon nanospheres[J]. Rsc Advances, 2018, 8(36):20095-20107.
    Simsir H, Eltugral N, Karagoz S. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization[J]. Bioresource Technology, 2017, 246:82-87.
    Tekin K, Pileidis F D, Akalin M K, et al. Cellulose-derived carbon spheres produced under supercritical ethanol conditions[J]. Clean Technologies and Environmental Policy, 2016, 18(1):331-338.
    Ryu J, Suh Y W, Suh D J, et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds[J]. Carbon,2010,48(7):1990-1998.
    Wang S H, Xu Q L, Li F, et al. Preparation and properties of cellulose-based carbon microsphere/poly(lactic acid) composites[J]. Journal of Composite Materials, 2014, 48(11):1297-1302.
    Qi Y J, Zhang M, Qi L, et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. Rsc Advances, 2016, 6(25):20814-20823.
    Falco C, Caballero F P, Babonneau F, et al. Hydrothermal Carbon from Biomass:Structural Differences between Hydrothermal and Pyrolyzed Carbons via C-13 Solid State NMR[J]. Langmuir, 2011, 27(23):14460-14471.
    Möller M, Harnisch F, Schröder U. Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity[J]. Rsc Advances, 2013, 3(27):11035.
    Cui L P, Shi S, Hou W S, et al. Hydrolysis and carbonization mechanism of cotton fibers in subcritical water[J]. New Carbon Materials, 2018, 33(3):245-250.
    Wu Q, Li W, Wu Y, et al. Effect of reaction time on structure of ordered mesoporous carbon microspheres prepared from carboxymethyl cellulose by soft-template method[J]. Industrial Crops and Products, 2015, 76:866-872.
    Lynam J G, Reza M T, Yan W, et al. Hydrothermal carbonization of various lignocellulosic biomass[J]. Biomass Conversion and Biorefinery, 2015, 5(2):173-181.
    Chowdhury Z Z, Krishnan B, Sagadevan S, et al. Effect of temperature on the physical, electro-chemical and adsorption properties of carbon micro-spheres using hydrothermal carbonization process[J]. Nanomaterials, 2018, 8(8):19.
    Saha N, Saba A, Reza M T. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137:138-145.
    Zhao H Y, Lu X A, Wang Y, et al. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization[J]. Journal of Materials Science, 2017, 52(18):10787-10799.
    Zhang C, Lin S, Peng J, et al. Preparation of highly porous carbon through activation of NH4Cl induced hydrothermal microsphere derivation of glucose[J]. Rsc Advances, 2017, 7(11):6486-6491.
    Hou W, Ling C, Shi S, et al. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid[J]. International Journal of Biological Macromolecules, 2019, 123:363-368.
    Zhao Y, Li W, Zhao X, et al. Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose[J]. Materials Research Innovations, 2013, 17(7):546-551.
    Cheng X X, Fu A P, Li H L, et al. Sustainable preparation of copper particles decorated carbon microspheres and studies on their bactericidal activity and catalytic properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10):2414-2422.
    Bediako J K, Wei W, Yun Y S. Conversion of waste textile cellulose fibers into heavy metal adsorbents[J]. Journal of Industrial and Engineering Chemistry, 2016, 43:61-68.
    Sperova M, Nasadil P, Prusova A, et al. A hint on the correlation between cellulose fibers polymerization degree and their thermal and thermo-oxidative degradation[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(1):71-76.
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal, 2009, 15(16):4195-4203.
    Ranjithkumar M, Ravikumar R, Sankar M K, et al. An effective conversion of cotton waste biomass to ethanol:A critical review on pretreatment processes[J]. Waste and Biomass Valorization, 2017, 8(1):57-68.
    Hall M, Bansal P, Lee J H, et al. Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate[J]. FEBS J, 2010, 277(6):1571-1582.
    Peciulyte A, Karlstrom K, Larsson P T,et al. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis[J]. Biotechnol Biofuels, 2015, 8(56):1-13.
    Jiang Z, Fan J, Budarin V L, et al. Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose[J]. Sustainable Energy & Fuels, 2018, 2(5):936-940.
  • 加载中
图(1)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  138
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回