留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂稻壳基多孔炭的制备及其氧气还原反应的电催化性能

时军 林楠 林海波 杨瑾 张文礼

时军, 林楠, 林海波, 杨瑾, 张文礼. 氮掺杂稻壳基多孔炭的制备及其氧气还原反应的电催化性能. 新型炭材料, 2020, 35(4): 401-409. doi: 10.1016/S1872-5805(20)60497-8
引用本文: 时军, 林楠, 林海波, 杨瑾, 张文礼. 氮掺杂稻壳基多孔炭的制备及其氧气还原反应的电催化性能. 新型炭材料, 2020, 35(4): 401-409. doi: 10.1016/S1872-5805(20)60497-8
SHI Jun, LIN Nan, LIN Hai-bo, YANG Jin, ZHANG Wen-li. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. New Carbon Mater., 2020, 35(4): 401-409. doi: 10.1016/S1872-5805(20)60497-8
Citation: SHI Jun, LIN Nan, LIN Hai-bo, YANG Jin, ZHANG Wen-li. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. New Carbon Mater., 2020, 35(4): 401-409. doi: 10.1016/S1872-5805(20)60497-8

氮掺杂稻壳基多孔炭的制备及其氧气还原反应的电催化性能

doi: 10.1016/S1872-5805(20)60497-8
基金项目: 国家重点研发计划项目(2017YFB0307500);国家自然科学基金项目(21975101);吉林大学科技创新团队项目(2017TD-31);长春市"双十"重大科技专项工程(17SS018).
详细信息
    作者简介:

    时军,博士研究生.E-mail:shijunhenu@163.com

    通讯作者:

    林海波,教授.E-mail:lhb910@jlu.edu.cn;张文礼,博士.E-mail:hiteur@163.com

  • 中图分类号: TQ127.1+1

A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction

Funds: National Key R&D Program of China (2017YFB0307500), National Natural Science Foundation of China (21975101), Science and Technology Innovation Team Project of Jilin University (2017TD-31), Major Science and Technology Research Project of "Shuangshi Project" in Changchun City (17SS018).
  • 摘要: 本文发展了一种氮掺杂稻壳基多孔炭(N-RHPC)的制备方法,即将RHPC在氨气氛围下进行高温处理,操作简单,有利于大规模制备。结果表明,N-RHPC的介孔体积、石墨化程度明显提高,XPS N 1s谱证实了N原子在RHPC结构上的有效掺杂。N-RHPC作为ORR电催化剂具有与商用Pt/C接近的电催化活性,并具有较好的稳定性以及耐甲醇毒性,这主要是由于氨气氛围下对RHPC的高温处理使N原子进入RHPC中而引入了大量的催化位点所致。N-RHPC制备方法简单,性价比高,作为电催化剂具有很好的应用前景。
  • Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
    Liang J, Zhou R F, Chen X M, et al. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction[J]. Advanced materials, 2014, 26(35):6074-6079.
    Hwang S J, Kim S K, Lee J G, et al. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2012, 134(48):19508-19511.
    Yang W, Liu X, Yue X, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. Journal of the American Chemical Society, 2015, 137(4):1436-1439.
    Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923):71-74.
    Wang Y, Liu H, Wang K, et al. 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction[J]. Applied Catalysis B:Environmental, 2017, 210:57-66.
    Zhang P, Xiang Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy Environ Sci, 2014, 7:442-450.
    Dai L, Xue Y, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11):4823-4892.
    Pandiaraj S, Aiyappa H B, Banerjee R, et al. Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction[J]. Chemical Communications, 2014, 50(25):3363-3366.
    Zhu J, Zhou H, Zhang C, et al. Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc-air batteries[J]. Nanoscale, 2017, 9(35):13257-13263.
    Wei Q, Yang X, Zhang G, et al. An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction[J]. Applied Catalysis B:Environmental, 2018, 237:85-93.
    Wang M, Lai Y, Fang J, et al. N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery[J]. International Journal of Hydrogen Energy, 2015, 40:16230-16237.
    Pan F, Cao Z, Zhao Q, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2014, 272:8-15.
    Wang Y, Zuo S, Liu Y. Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction[J]. Electrochimica Acta, 2018, 263:465-473.
    Wang X, Wang W, Qin R, et al. Defluorination-assisted heteroatom doping reaction with ammonia gas for synthesis of nitrogen-doped porous graphitized carbon[J]. Chemical Engineering Journal, 2018, 354:261-268.
    Li K, Chen W, Yang H, et al. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials[J]. Bioresource technology, 2019, 280:260-268.
    Liu D, Zhang W, Lin H, et al. Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors[J]. RSC Advances, 2015, 5(25):19294-19300.
    Liu D, Zhang W, Lin H, et al. A green technology for the preparation of high capacitance rice husk-based activated carbon[J]. Journal of cleaner production, 2016, 112:1190-1198.
    Can W, Dianyu W, Shuang Z, et al. Facile self-templating melting route preparation of biomass-derived hierarchical porous carbon for advanced supercapacitors[J]. Chemical Research In Chinese Universities, 2018, 34(6):983-988.
    Yuan C, Lin H, Lu H, et al. Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors[J]. Applied Energy, 2016, 178:260-268.
    Yin J, Lin N, Lin Z, et al. Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation[J]. Journal of Electroanalytical Chemistry, 2019, 832:266-274.
    Zhang W L, Yin J, Lin Z Q, et al. Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation[J]. Journal of Power Sources, 2017, 342:183-191.
    Yin J, Lin N, Zhang W, et al. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface[J]. Journal of energy chemistry, 2018, 27(6):1674-1683.
    Yin J, Lin N, Lin Z Q, et al. Hierarchical porous carbon@PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage[J]. Energy, 2020, 193:116675.
    Shi J, Lin N, Liu D, et al. Preparation of C/SnO2 composite with rice husk-based porous carbon carrier loading ultrasmall SnO2 nanoparticles for anode in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019:113634.
    Feng D, Yang H, Wang Q, et al. Preparation and characteristic of three-dimensional NiCo alloy/carbon composite monoliths with well-defined macropores and mesostructured skeletons[J]. Journal of materials science, 2019, 54(6):4719-4731.
    Sun, Xin, et al. Structural and electrochemical characterization of ordered mesoporous carbon-reduced graphene oxide nanocomposites[J]. Journal of Materials Chemistry, 2012, 22(21):10900-10910.
    Su F, Poh C K, Chen J S, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties[J]. Energy & Environmental Science, 2011, 4(3):717-724.
    Wang Y, Su F, Wood C D, et al. Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries[J]. Industrial & Engineering Chemistry Research, 2008, 47(7):2294-2300.
    Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical chemistry chemical physics, 2007, 9(11):1276-1290.
    Lespade P, Al-Jishi R, Dresselhaus M S. Model for Raman scattering from incompletely graphitized carbons[J]. Carbon, 1982, 20(5):427-431.
    Weingarth D, Zeiger M, Jäckel N, et al. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors[J]. Advanced Energy Materials, 2014, 4(13):1400316.
    Kaciulis S. Spectroscopy of carbon:From diamond to nitride films[J]. Surface and Interface Analysis, 2012, 44(8):1155-1161.
    Li Y, Zhou W, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nat Nanotechnol, 2012, 7:394-400.
    Liu J, Song P, Xu W. Structure-activity relationship of doped-nitrogen (N)-based metal-freeactive sites on carbon for oxygen reduction reaction[J]. Carbon, 2017, 115:763-772.
  • 加载中
图(1)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  129
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-07-02
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回