留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积温度对纳米碳管-铁粒子复合物的制备及吸波性能影响

刘渊 赖杰 师金锋

刘渊, 赖杰, 师金锋. 沉积温度对纳米碳管-铁粒子复合物的制备及吸波性能影响. 新型炭材料, 2020, 35(4): 428-435. doi: 10.1016/S1872-5805(20)60500-5
引用本文: 刘渊, 赖杰, 师金锋. 沉积温度对纳米碳管-铁粒子复合物的制备及吸波性能影响. 新型炭材料, 2020, 35(4): 428-435. doi: 10.1016/S1872-5805(20)60500-5
LIU Yuan, LAI Jie, SHI Jin-feng. Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites. New Carbon Mater., 2020, 35(4): 428-435. doi: 10.1016/S1872-5805(20)60500-5
Citation: LIU Yuan, LAI Jie, SHI Jin-feng. Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites. New Carbon Mater., 2020, 35(4): 428-435. doi: 10.1016/S1872-5805(20)60500-5

沉积温度对纳米碳管-铁粒子复合物的制备及吸波性能影响

doi: 10.1016/S1872-5805(20)60500-5
基金项目: 重庆市基础科学与前沿技术研究专项资助(cstc2017jcyjAX0078).
详细信息
    通讯作者:

    刘渊,讲师,博士.E-mail:liuyuanbixue@163.com

  • 中图分类号: TB33

Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites

Funds: Chongqing Basic Science and Frontier Technology Research Special Support (cstc2017jcyjax0078).
  • 摘要: 采用金属有机化学气相沉积(MOCVD)工艺,以Fe(CO)5为前驱体,在CNTs表面原位生长纳米级Fe粒子,通过改变沉积温度,调控复合粉体的形貌结构和吸波性能。用X射线衍射仪、场发射电子显微镜、透射电子显微镜和矢量网络分析仪对粉末的结构及电磁性能进行表征并对其吸波性能进行研究。结果表明,随着沉积温度升高(210~240℃),沉积到CNTs表面的Fe粒子逐渐增加;沉积温度过高时(270℃)会造成CNTS表面Fe粒子团聚。通过调节沉积温度,可以调控CNTs-Fe复合粉体的电磁性能。以吸波性能为考察指标,最终确定最佳的沉积温度为240℃。以沉积温度为240℃时所获样品的电磁参数,模拟计算出涂层厚度为2.9 mm时,反射率达到最小值为-28.3 dB,小于-10 dB的吸波带宽最大为6.1 GHz(10.2~16.3 GHz)。
  • Xia J, Li S M, Gao S, et al. Preparation of CoNiP nanoparticles supported on nitrogen-doped carbon nanotubes as high performance electrocatalysts for the hydrogen evolution reaction[J]. New Carbon Materials, 2020, 35(1):87-96.
    Liang C,Yu Y,Chen C, et al. Rational design of CNTs with encapsulated Co nanospheres as superior acidic-and-basic-resistant microwave absorber[J]. Dalton Transactions, 2018, 47(33):11554-11562.
    Wen F, Zhang F, et al. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C 2011, 115, 14025-14030.
    Cheng Y,Cao J,Lu H, et al. In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1-x-catalyzed growth to pursue superior microwave attenuation in X-band[J]. Inorganic Chemistry Frontiers, 2019, 6:309-316.
    Qi Q, Huang Y, Xu M, et al. Synthesis and microwave absorption properties of sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge[J]. Journal of Materials Science, 2017, 28(20):15043-15049.
    Yang S,You W,Qiu L, et al. Progress on microwave absorption materials with core-shell structure[J]. Chinese Science Bulletin, 2018, 63(8):712-724.
    Liu P,Gao S,Wang Y, et al. Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Applied Materials & Interfaces, 2019, 11(28):25624-25635.
    Wang S, Huang F, Zhang M, et al. Fe3O4/carbon chain-like core/shell composites:Synthesis and microwave absorption properties[J]. Integrated Ferroelectrics, 2018, 190(1):76-84.
    Zhou L,Qiu J,Wang H, et al. Enhanced microwave absorption properties of carbonyl iron/resin composites incorporated with Ti3SiC2 particles[J]. Journal of Materials Science Materials in Electronics, 2019, 30(14):13774-13784.
    Liu Y F, Li L X, Wang Y Y, et al. Corrosion resistance and wave absorbing property of carbonyl iron powder coating with alumina by atomic layer deposition[J]. Journal of Inorganic Materials, 2017, 32(7):751-757.
    Ge C Q, Wang L Y, Liu G, et al. Effect of different purification method on electromagnetic properties of multiwalled carbon nanotube[J]. Journal of Functional Materials, 2013, 5:713-717.
    Xue R J, Wu Y C. Mechanism and electromagnetic properties of electroless plating Ni-Co-P/SiC nanometer composite powder[J]. Journal of the Chinese Ceramic Society, 2008, 36(4):555-558.
    Ma Z. Preparation and high frequency research on micro and nano magnetic materials[D]. Lanzhou University, 2012.
    Xie S, Guo X N, Jin G Q, et al. Carbon coated Co-SiC nanocomposite with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics, 2013, 15(38):16104-16110.
    Li G, Wang L, Li W, et al. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent[J]. Physical Chemistry Chemical Physics, 2014, 16(24):12385-12392.
    Han Z Q. Ferrite and its Magnetic Physics[M]. Aviation Industry Press, 2010.
    Qiao M, Lei X, Ma Y, et al. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Research, 2017, 11(3):1500-1519.
    Pan G, Zhu J, Ma S, et al. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene[J]. ACS applied materials & interfaces, 2013, 5(23):12716-12724.
    Bregar V B. Advantages of ferromagnetic nanoparticle composites in microwave absorbers[J]. Magnetics, IEEE Transactions on, 2004, 40(3):1679-1684.
    Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics[J]. IEEE Trans Microwave Theory Techniq, 1971, 19:65-72.
    Meshram M R, Nawal K Agrawal, Bharoti Sinha, et al. Characterization of M-type barium hexagonal ferrite based wide band microwave absorber[J]. Journal of Magnetism and Magnetic Materials, 2004, 271:207-214.
  • 加载中
图(1)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  154
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回