留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于太阳能驱动蒸汽发生的低成本荷叶基炭膜

郭明晰 武晶斌 李风海 郭倩倩 樊红莉 赵慧敏

郭明晰, 武晶斌, 李风海, 郭倩倩, 樊红莉, 赵慧敏. 用于太阳能驱动蒸汽发生的低成本荷叶基炭膜. 新型炭材料, 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7
引用本文: 郭明晰, 武晶斌, 李风海, 郭倩倩, 樊红莉, 赵慧敏. 用于太阳能驱动蒸汽发生的低成本荷叶基炭膜. 新型炭材料, 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7
GUO Ming-xi, WU Jing-bin, LI Feng-hai, GUO Qian-qian, FAN Hong-li, ZHAO Hui-min. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater., 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7
Citation: GUO Ming-xi, WU Jing-bin, LI Feng-hai, GUO Qian-qian, FAN Hong-li, ZHAO Hui-min. A low-cost lotus leaf-based carbon film for solar-driven steam generation. New Carbon Mater., 2020, 35(4): 436-443. doi: 10.1016/S1872-5805(20)60501-7

用于太阳能驱动蒸汽发生的低成本荷叶基炭膜

doi: 10.1016/S1872-5805(20)60501-7
基金项目: 山东省自然科学基金(ZR2017BB063,ZR2018MB037);国家自然科学基金(21875059);菏泽学院科研基金(XY16BS28).
详细信息
    通讯作者:

    郭明晰,副教授.E-mail:gmx0822@163.com

  • 中图分类号: TQ127.1+1

A low-cost lotus leaf-based carbon film for solar-driven steam generation

Funds: Natural Science Foundation of Shandong Province, China (ZR2017BB063, ZR2018MB037), Natural Science Foundation of China (21875059), Scientific Research Fund of Heze University, China (XY16BS28).
  • 摘要: 太阳能驱动的界面蒸发因其解决淡水资源短缺的潜力而备受关注。低成本、高效率的光热转换材料是其广泛应用的关键。本文通过简单的真空抽滤法制备了低成本的荷叶基炭膜,作为太阳能驱动蒸汽发生的光热转换介质。使用市售聚苯乙烯泡沫塑料和多孔纤维滤纸分别作为保温层和输水通道,在实验室自制的太阳蒸汽发生实时测试系统中,荷叶基炭膜的太阳能驱动水蒸发速率和太阳能蒸汽转换效率分别为1.30 kg/m2 h和77.5%。同时,荷叶基炭膜在海水淡化和污水净化方面也表现出了优异性能。这些结果为低成本、环境友好的生物质基炭材料在太阳能驱动蒸汽发生中的广泛应用提供了可能。
  • Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
    Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advance, 2016, 2(2):e1500323.
    Elimelech M, Phillip W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333(6043):712.
    Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination:Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9):2317-2348.
    Ibrahim A G M, Rashad A M, Dincer I. Exergoeconomic analysis for cost optimization of a solar distillation system[J]. Solar Energy, 2017, 151(15):22-32.
    Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles[J]. Acs Nano, 2013, 7(1):42-49.
    Bae K, Kang G, Cho S K, et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J]. Nature Communications, 2015, 6(1):10103.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges, 2018, 2(2):1700094.
    Deng Z, Zhou J, Miao L, et al. The emergence of solar thermal utilization:Solar-driven steam generation[J]. Journal of Materials Chemistry A, 2017, 5(17):7691-7709.
    Zhang P, Liao Q, Yao H, et al. Direct solar steam generation system for clean water production[J]. Energy Storage Materials, 2019, 18:429-446.
    Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photon, 2016, 10(6):393-398.
    Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4):e1501227.
    Chen M, Wu Y, Song W, et al. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13):6186-6193.
    Jiang Q, Gholami Derami H, Ghim D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35):18397-18402.
    Zhu G, Xu J, Zhao W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46):31716-31721.
    Ding D, Huang W, Song C, et al. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation[J]. Chemical Communication, 2017, 53(50):6744-6747.
    Wu D, Qu D, Jiang W, et al. Self-floating nanostructured Ni-NiOx/Ni foam for solar thermal water evaporation[J]. Journal of Materials Chemistry A, 2019, 7(14):8485-8490.
    Ren P, Yang X. Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J]. Solar Rrl, 2018, 2(4):1700233.
    Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy, 2015, 17:290-301.
    Zhang P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017, 11(5):5087-5093.
    Zhou X, Zhao F, Guo Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8):1985-1992.
    Wang H, Du A, Ji X, et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS Applied Materials & Interfaces, 2019, 11(45):42057-42065.
    Fang Q, Li T, Lin H, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance[J]. ACS Applied Energy Materials, 2019, 2(6):4354-4361.
    Singh S, Shauloff N, Jelinek R. Solar-enabled water remediation via recyclable carbon-dot/hydrogel composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):13186-13194.
    Xu N, Hu X, Xu W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28):1606762.
    Liu J, Liu Q, Ma D, et al. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(15):9034-9039.
    Xue G, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17):15052-15057.
    Li T, Liu H, Zhao X, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device:Localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16):1707134.
    Fang J, Liu J, Gu J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J].Chemistry of Materials, 2018, 30(18):6217-6221.
    Cheng Y T, Rodak D E, Wong C A, et al. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves[J]. Nanotechnology, 2006, 17(5):1359-1362.
    Boström T, Wäckelgård E, Westin G. Solution-chemical derived nickel-alumina coatings for thermal solar absorbers[J]. Solar Energy, 2003, 74(6):497-503.
    Wang X, Li H, Yu X, et al. High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers[J]. Applied Physics Letters, 2012, 101(20):203109.
    Organization W H. Safe drinking-water from desalination[J]. Environmental Science & Technology, 2011, 27:2295-2297.
  • 加载中
图(1)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  175
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-06-30
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回