留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂石墨烯墨水的制备及理化特性

胡克文 李贺军 齐乐华 罗俊 连洪程

胡克文, 李贺军, 齐乐华, 罗俊, 连洪程. 氮掺杂石墨烯墨水的制备及理化特性. 新型炭材料, 2020, 35(4): 444-451. doi: 10.1016/S1872-5805(20)60502-9
引用本文: 胡克文, 李贺军, 齐乐华, 罗俊, 连洪程. 氮掺杂石墨烯墨水的制备及理化特性. 新型炭材料, 2020, 35(4): 444-451. doi: 10.1016/S1872-5805(20)60502-9
HU Ke-wen, LI He-jun, QI Le-hua, LUO Jun, LIAN Hong-cheng. Preparation and physicochemical properties of nitrogen-doped graphene inks. New Carbon Mater., 2020, 35(4): 444-451. doi: 10.1016/S1872-5805(20)60502-9
Citation: HU Ke-wen, LI He-jun, QI Le-hua, LUO Jun, LIAN Hong-cheng. Preparation and physicochemical properties of nitrogen-doped graphene inks. New Carbon Mater., 2020, 35(4): 444-451. doi: 10.1016/S1872-5805(20)60502-9

氮掺杂石墨烯墨水的制备及理化特性

doi: 10.1016/S1872-5805(20)60502-9
基金项目: 国家自然科学基金(51772245);西北工业大学研究生创意创新种子基金项目(ZZ2018074).
详细信息
    作者简介:

    胡克文,硕士.E-mail:hukewen@mail.nwpu.edu.cn

    通讯作者:

    李贺军,教授.E-mail:lihejun@nwpu.edu.cn

  • 中图分类号: TB332

Preparation and physicochemical properties of nitrogen-doped graphene inks

Funds: National Natural Science Foundation of China (51772245), Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (ZZ2018074).
  • 摘要: 氮掺杂石墨烯墨水浓度低、缺陷多、易发生团聚,制约了功能器件的发展。本文利用化学氧化还原法与溶剂热法制备出氮掺杂含量为8.58 at%、电导率为257.2 S·m-1的石墨烯墨水。通过添加不同比例的表面活性剂如SLS、SDS、SDBS,所制墨水Zeta电位为-50~-90 mV,且分散稳定性良好。利用所制氮掺杂石墨烯墨水打印出线宽约为250 μm的直线,线条内部氮掺杂石墨烯分布均匀、成膜性好,为功能器件的制备奠定了基础。
  • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    K S Novoselov V I F K. A roadmap for graphene[J]. Nature, 2012, 7419(490):192-200.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Li S, Yang S, Wang Y, et al. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte[J]. Journal of Power Sources, 2015, 278:218-229.
    Tian G, Liu L, Meng Q, et al. Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping[J]. Journal of Power Sources, 2015, 274:851-861.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
    Yao Z, Wang M, Sun S, et al. High performance photocatalysts based on N-doped graphene-P25 for photocatalytic reduction of carbon tetrachloride[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24(2):315-320.
    Wang Y, Shao Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010, 4(4):1790-1798.
    Schwierz F. Graphene transistors[J]. Nature Nanotechnology,2010, 5(7):487-496.
    Haedon A. Carbon-based electronics[Z]. 2007:2, 174-184.
    Ma G. Synthesis of nitrogen-doped graphene and its catalytic activity for the oxygen reduction reaction in fuel cells[Z]. 2012:4, 258-265.
    Li Y F, Liu Y Z, Chen S, et al. Self-templating synthesis nitrogen and sulfur co-doped hierarchical porous carbons derived from crab shells as a high-performance metalfree oxygen electroreduction catalyst[J]. Materials Today Energy, 2018, 10:388-395.
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem, 2018, 5:3506-3513.
    Chen P, Yang J, Li S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2):249-256.
    Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphene films For lithium battery application[J]. ACS Nano, 2010, 4(11):6337-6342.
    Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 2013, 341(6146):620-621.
    Sensale-Rodriguez B, Yan R, Liu L, et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 2013, 101(7):1705-1716.
    Singh M, Haverinen H M, Dhagat P, et al. Inkjet printing-process and its applications[J]. Advanced Materials, 2010, 22(6):673-685.
    Zhang L, Liu H, Zhao Y, et al. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography[J]. Advanced Materials, 2012, 24(3):436-440.
    Li J, Ye F, Vaziri S, et al. Efficient inkjet printing of graphene[J]. Advanced Materials, 2013, 25(29):3985-3992.
    De Gans B J, Duineveld P C, Schubert U S. Inkjet printing of polymers:State of the art and future developments[J]. Advanced Materials, 2004, 16(3):203-213.
    Huang L, Huang Y, Liang J, et al. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors[J]. Nano Research, 2011, 4(7):675-684.
    Aleeva Y, Pignataro B. Recent advances in upscalable wet methods and ink formulations for printed electronics[J]. J Mater Chem C, 2014, 2(32):6436-6453.
    Li P, Tao C, Wang B, et al. Preparation of graphene oxide-based ink for inkjet printing[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(1):713-718.
    Lee C, Chen C, Chen C. Graphene nanosheets as ink particles for inkjet printing on flexible board[J]. Chemical Engineering Journal, 2013, 230:296-302.
    Dua V, Surwade S P, Ammu S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(12):2154-2157.
    Wang G, Wang Z, Liu Z, et al. Annealed graphene sheets decorated with silver nanoparticles for inkjet printing[J]. Chemical Engineering Journal, 2015, 260:582-589.
    M Sangermano, M Sturari, A Chiappone, et al. Study of ink-jet printable vinyl ether-graphene UV-curable formulations[J]. Macromolecular Materials and Engineering, 2015, 300(3):340-345.
    Rangappa D, Sone K, Wang M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry-A European Journal, 2010, 16(22):6488-6494.
    Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene:Synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5):781-794.
    Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Synthesis, structure, and properties of boron-and nitrogen-doped graphene[J]. Advanced Materials, 2009:52-61.
    Qu L, Liu Y, Baek J, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3):1321-1326.
    Sheng Z, Shao L, Chen J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6):4350-4358.
    He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1):53-56.
    Greenwood R. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis[Z]. 1999:19, 479-488.
    Hanaor D, Michelazzi M, Leonelli C, et al. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2[J]. Journal of the European Ceramic Society, 2012, 32(1):235-244.
    Derby B, Reis N. Inkjet printing of highly loaded particulate suspensions[J]. MRS Bulletin, 2003, 28(11):815-818.
    Derby B. Inkjet printing of functional and structural materials:fluid property requirements, feature stability, and resolution[J]. Annual Review of Materials Research, 2010, 40(1):395-414.
    Cummins G, Desmulliez M P Y. Inkjet printing of conductive materials:a review[J]. Circuit World, 2012, 38(4):193-213.
    Hoath S D, Hutchings I M, Martin G D, et al. Links between ink rheology, drop-on-demand jet formation, and printability[J]. Journal of Imaging Science and Technology, 2009, 53(4):41208.
    Xu D, Sanchez-Romaguera V, Barbosa S, et al. Inkjet printing of polymer solutions and the role of chain entanglement[J]. Journal of Materials Chemistry, 2007, 17(46):4902.
    Schiaffino S, Sonin A A. Molten droplet deposition and solidification at low Weber numbers[J]. Physics of Fluids, 1997, 9(11):3172-3187.
  • 加载中
图(1)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  87
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-06-30
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回