留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚麻织物衍生碳基柔性可穿戴应变传感器

梁菁菁 赵宗彬 唐永超 梁智慧 孙璐璐 潘鑫 王旭珍 邱介山

梁菁菁, 赵宗彬, 唐永超, 梁智慧, 孙璐璐, 潘鑫, 王旭珍, 邱介山. 亚麻织物衍生碳基柔性可穿戴应变传感器. 新型炭材料, 2020, 35(5): 522-530. doi: 10.1016/S1872-5805(20)60505-4
引用本文: 梁菁菁, 赵宗彬, 唐永超, 梁智慧, 孙璐璐, 潘鑫, 王旭珍, 邱介山. 亚麻织物衍生碳基柔性可穿戴应变传感器. 新型炭材料, 2020, 35(5): 522-530. doi: 10.1016/S1872-5805(20)60505-4
LIANG Jing-jing, ZHAO Zong-bin, TANG Yong-chao, LIANG Zhi-hui, SUN Lu-lu, PAN Xin, WANG Xu-zhen, QIU Jie-shan. A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Mater., 2020, 35(5): 522-530. doi: 10.1016/S1872-5805(20)60505-4
Citation: LIANG Jing-jing, ZHAO Zong-bin, TANG Yong-chao, LIANG Zhi-hui, SUN Lu-lu, PAN Xin, WANG Xu-zhen, QIU Jie-shan. A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Mater., 2020, 35(5): 522-530. doi: 10.1016/S1872-5805(20)60505-4

亚麻织物衍生碳基柔性可穿戴应变传感器

doi: 10.1016/S1872-5805(20)60505-4
基金项目: 国家自然科学基金(51672033,U1610255,U1610105,U1703251).
详细信息
    作者简介:

    梁菁菁,博士研究生.E-mail:liangjingjing@mail.dlut.edu.cn

    通讯作者:

    赵宗彬,教授.E-mail:zbzhao@dlut.edu.cn;邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: TB33

A wearable strain sensor based on carbon derived from linen fabrics

Funds: National Natural Science Foundation of China (51672033, U1610255, U1610105, U1703251).
  • 摘要: 柔性可穿戴应变传感器对于发展人工智能、人体运动参数监测以及精准远程医疗均具有重要的辅助作用,碳基材料由于具有良好的导电性和机械性能是可穿戴应变传感器的理想备选材料。本工作以亚麻织物高温炭化产物为基体,通过表面修饰策略,将亚麻织物衍生炭与二维石墨烯、一维银纳米线有机融合,制备得到了复合型柔性可穿戴应变传感器。该应变传感器性能优良,应变工作范围大(60%),灵敏度高(应变范围为0~20%、20%~40%、40%~60%对应的应变系数分别为11.2、36.8、74.5),测量稳定性好,成功用于人体关节运动的检测(手腕、肘部、膝盖),具有潜在的应用前景。本工作对于高性能柔性可穿戴复合型应变传感器的创制提供了新思路。
  • Zeng T, Huang X. Development, challenges and future trends of wearable sensors[J]. Science and Technology Review, 2017, 35(2):19-32.
    Yan T, Wang Z, Pan Z J. Flexible strain sensors fabricated using carbon-based nanomaterials:A review[J]. Current Opinion in Solid State and Materials Science, 2018, 22(6):213-228.
    Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications:A review[J]. Advanced Functional Materials, 2016, 26(11):1678-1698.
    Wang C Y, Xia K L, Wang H M, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials, 2018, 31(9):1801072.
    Rogers J A, Someya T, Huang Y G. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973):1603-1607.
    Chen S J, Wu R Y, Li P, et al. Acid-interface engineering of carbon nanotube/elastomer with enhanced sensitivity for stretchable strain sensor[J]. ACS Applied Materials & Interfaces, 2018, 10(43):37760-37766.
    Shang S Y, Yue Y J, Wang X E. Piezoresistive strain sensing of carbon black/silicone composites above percolation threshold[J]. Review of Scientific Instruments, 2016, 87(12):123910.
    Yi W J, Wang Y Y, Wang G F, et al. Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors[J]. Polymer Testing, 2012, 31(5):677-684.
    Park J S, Kang P H, Nho Y C. Characterization of carbon black filled polymer composites for strain sensor[J]. Journal of Industrial and Engineering Chemistry, 2003, 9(5):595-601.
    Lu N S, Lu C, Yang S X, et al. Highly sensitive skin-mountable strain gauges based entirely on elastomers[J]. Advanced Functional Materials, 2012, 22(19):4044-4050.
    Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011, 6(5):296-301.
    Xin Y Y, Zhou J, Xu X Z, et al. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors[J]. Nanoscale, 2017, 9(30):10897-10905.
    Zhao H, Bai J B. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction[J]. ACS Applied Materials & Interfaces, 2015, 7(18):9652-9659.
    Vertuccio L, Vittoria V, Guadagno L, et al. Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain[J]. Composites Part A-Applied Science and Manufacturing, 2015, 71:9-16.
    Giffney T, Bejanin E, Kurian A S, et al. Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites[J]. Sensors and Actuators a-physical, 2017, 259:44-49.
    Christ J F, Aliheidari N, Ameli A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materal Design, 2017, 131:394-401.
    Zeng You, Liu Peng-fei, Zhao Long, et al. High electrical sensitivity of polyurethane carbon nanotube composites to tensile strain[J]. New Carbon Materials, 2013, 28(2):88-93.
    Anike J C, Belay K, Abot J L. Piezoresistive response of carbon nanotube yarns under tension:Parametric effects and phenomenology[J]. New Carbon Materials, 2018, 33(2):140-154.)
    Pang Y, Tian H, Tao L Q, et al. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure[J]. ACS Applied Materials & Interfaces, 2016, 8(40):26458-26462.
    Park J J, Hyun W J, Mun S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6317-6324.
    Tian H, Shu Y, Cui Y L, et al. Scalable fabrication of high-performance and flexible graphene strain sensors[J]. Nanoscale, 2014, 6(2):699-705.
    Jeong Y R, Park H, Jin S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J]. Advanced Functional Materials, 2015, 25(27):4228-4236.
    Yao H B, Ge J, Wang C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46):6692-6698.
    Samad Y A, Li Y Q, Alhassan S M, et al. Novel graphene foam composite with adjustable sensitivity for sensor applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9195-9202.
    Tang Y C, Zhao Z B, Hu H, et al. Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27432-27439.
    Wang C Y, Li X, Gao E L, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials, 2016, 28(31):6640-6648.
    Zhang M C, Wang C Y, Wang H M, et al. Carbonized cotton fabric for high performance wearable strain sensors[J]. Advanced Functional Materials, 2017, 27(2):1604795.
    Wang C Y, Xia K L, Jian M Q, et al. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring[J]. Journal of Materials Chemistry C, 2017, 5(30):7604-7611.
    Wang C Y, Xia K L, Zhang M C, et al. An all-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials & Interfaces, 2017, 9(45):39484-39492.
    Li Q, Ullah Z, Li W W, et al. Wide-range strain sensors based on highly transparent and supremely stretchable graphene/Ag nanowires hybrid structures[J]. Small, 2016, 12(36):5058-5065.
    Han J T, Jang J I, Cho J Y, et al. Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electroncs[J]. Scientific Reports, 2017, 7(1):4931.
    Kim J, Lee S W, Kim M H, et al. Zigzag-shaped silver nanoplates:synthesis via Ostwald ripening and their application in highly sensitive strain sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(45):39134-39143.
    Niu Y, Ma C, Li D, et al. Preparation and characterization of activated carbon from potassium hydroxide activated linen fabric waste[J]. Chemical Journal of Chinese Universities, 2010, 31(10):1929-1933.
    Chen L, Zou L, Sun W. Preparation and oil adsorption property of thermal-modified waste flax fibers[J]. Journal of Textile Research, 2017, 38(6):17-22.
    Zeng D, Yin K, Li Ming, et al. Waste linen cloth-based carbon fibers and its application for supercapacitor[J]. Journal of Wuhan University(Natural Science Edition), 2018, 64(4):311-315.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
    Zeng X P, Zhou B P, Gao Y B, et al. Structural dependence of silver nanowires on polyvinyl pyrrolidone (PVP) chain length[J]. Nanotechnology, 2014, 25(49):495601.
    Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601):2176-2179.
  • 加载中
图(1)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  254
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-12
  • 修回日期:  2019-03-21
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回