留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔及其合成设计

李旭 李宝华 贺艳兵 康飞宇

李旭, 李宝华, 贺艳兵, 康飞宇. 石墨炔及其合成设计. 新型炭材料, 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2
引用本文: 李旭, 李宝华, 贺艳兵, 康飞宇. 石墨炔及其合成设计. 新型炭材料, 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2
LI Xu, LI Bao-hua, HE Yan-bing, KANG Fei-yu. A review of graphynes: properties, applications and synthesis. New Carbon Mater., 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2
Citation: LI Xu, LI Bao-hua, HE Yan-bing, KANG Fei-yu. A review of graphynes: properties, applications and synthesis. New Carbon Mater., 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2

石墨炔及其合成设计

doi: 10.1016/S1872-5805(20)60518-2
基金项目: 国家自然科学基金(51672156).
详细信息
    作者简介:

    李旭,博士研究生.E-mail:lixu12@mails.tsinghua.edu.cn

    通讯作者:

    康飞宇,教授,博士生导师.E-mail:fykang@mail.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

A review of graphynes: properties, applications and synthesis

Funds: National Natural Science Foundation of China (51672156).
  • 摘要: 石墨炔是一种同时含有sp和sp2杂化碳的二维全炭材料,是目前为止继石墨烯之后受到关注最多的碳的同素异形体。由于其独特的电子结构,石墨炔具有很多潜在的应用和独特的性能。本文概述了石墨炔的概念及性质,综述了石墨炔的各种独特的性能及其潜在的应用,提出了合成设计的一些方案与思路,并对石墨炔研究的前景进行了展望。
  • Inagaki M, Kang F. Carbon Materials Science and Engineering-from Fundamentals to Applications. Beijing:Tsinghua University Press[M]. 2011:3-6.
    Inagaki M, Kang F, Toyoda M, et al. Advanced Materials Science and Engineering of Carbon. Beijing:Tsinghua University Press[M]. 2013:2-4.
    Goresy A E L, Donnay G. A new allotropic form of carbon from the Ries Crater[J]. Science, 1968, 161:363-364.
    Whittaker A G. Carbon:A new view of its high-temperature behavior[J]. Science, 1978, 200:763-764.
    Whittaker A G, Watts E J. Carbynes:carriers of priomordial noble gases in meteorites[J]. Science, 1980, 209:1512-1514.
    Hayatsu R, Scott R G, Studier M H. Carbynes in meteorites:Detection, low-temperature origin, and implications for interstellar molecules[J]. Science, 1980, 209:1515-1518.
    Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene[J]. Nature, 1985, 318:162-163.
    ZHANG Ze-xia, LU Rui-tao, HUANG Zheng-hong, et al. Carbon materials for use in the electrocatalytic hydrogen evolution reaction[J]. New Carbon Materials, 2019, 34(2):115-131.
    ZHANG Hai-xia, MA Qiong, WANG Yong-zhen, et al. Improved corrosion resistance of copper coated by graphene[J]. New Carbon Materials, 2019, 34(2):153-160.
    Inagaki M, Kang F. Graphene derivatives:Graphane, fluorographene, graphene oxide, graphyne and graphdiyne[J]. Journal of Materials Chemistry A, 2014, 2:13193-13206.
    Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102:10451-10453.
    Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499:419-425.
    Diederich F, Kivala M. All-carbon scaffolds by rational design[J]. Advanced Materials, 2010, 22:803-812.
    Hirsch A. The era of carbon allotropes[J]. Nature Materials, 2010, 9:868-871.
    Diederich F. Carbon scaffolding:Building acetylenic all-carbon and carbon-rich compounds[J]. Nature, 1994, 369:199-207.
    Haley M M, Brand S C, Pak J J. Carbon networks based on dehydrobenzoannulenes:Synthesis of graphdiyne substructures[J]. Angewandte Chemie International Edition, 1997, 36:836-838.
    Wan W B, Brand S C, Pak J J, et al. Carbon network based on dehydrobenzoannulenes:Part 2 synthesis of expanded graphdiyne substructures[J]. Chemistry-A European Journal, 2000, 6:2044-2052.
    Kehoe J M, Kiley J H, English J J, et al. Carbon network based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures[J]. Organic Letters, 2000, 2:969-972.
    Wan W B, Haley M M. Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfoldcross-coupling of hexaiodobenzene[J]. The Journal of Organic Chemistry, 2001, 66:3893-3901.
    Marsden J A, Haley M M. Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensionalconjugation in graphdiyne nanoarchitectures[J]. The Journal of Organic Chemistry, 2005, 70:10213-10226.
    Gao X, Liu H, Wang D, et al. Graphdiyne:synthesis, properties, and applications[J]. Chemistry Society Review, 2019, 48:908-936.
    Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Advanced Materials, 2019, 31:1803758.
    李勇军, 李玉良. 二维高分子——新碳同素异形体石墨炔研究[J]. 高分子学报, 2015, 2:147-165. (LI Yong-jun, LI Yu-liang. Two dimensional polymers-progress of full carbon graphyne[J]. Acta Polymerica Sinica, 2015, 2:147-165.)
    Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne:From theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43:2572-2586.
    Ivanovskii A L. Graphynes and graphdiynes[J]. Progress in Solid State Chemistry, 2013, 41:1-19.
    Baughman R H, Eckhardt H, Kertesz M J. Structure-property predictions for new planar forms of carbon:Layere phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics, 1987, 87:6687-6699.
    Cranford S W, Brommer D B, Buehler M J. Extended graphynes:Simple scaling laws for stiffness, strength and fracture[J]. Nanoscale, 2012, 4:7797-7809.
    Malko D, Neiss C, Vines F. et al. Competition for graphene:Graphynes with direction-dependent Dirac cones[J]. Physical Review Letters, 2012, 108:086804.
    Xu Y G, Ming C, Lin Z Z, et al. Can graphynes turn into graphene at room temperature[J]? Carbon, 2014, 73:283-290.
    Narita N, Nagai S, Suzuki S, et al. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B:Condensed Matter and Materials Physics, 1998, 58:11009-11014.
    Narita N, Nagai S, Suzuki S, et al. Electronic structure of three-dimesional graphyne[J]. Physical Review B:Condensed Matter and Materials Physics, 2000, 62:11146-11151.
    Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne:Theory and experiment[J]. Physical Review B:Condensed Matter and Materials Physics, 2011, 84:075439.
    Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons:Theoretical predictions[J]. ACS Nano, 2011, 5:2593-600.
    Sheng X L, Chen C, Liu H, et al. Two-dimensional second-order topological insulator in graphdiyne[J]. Physical Review Letters, 2019, 123:256402.
    Sani S S, Mousavi H, Asshabi M, et al. Electronic properties of graphyne and graphdiyne in tight-binding model[J]. ECS Journal of Solid State Science and Technology, 2020, 9:031003.
    Jing Y, Wu G, Guo L, et al. Electronic transport properties of graphyne and its family[J]. Computational Materials Science, 2013, 78:22-28.
    Ding H, Bai H, Huang Y. Electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons[J]. AIP Advances, 2015, 5:077153.
    Majidi R, Karami A. Electronic properties of bilayer and trilayer graphyne in the presence of electric field[J]. Structural Chemistry, 2014, 25:853-858.
    Zhang D, Xiao J, Zeng Y, et al. Electronic and magnetic properties of zigzag α-graphyne nanoribbons with edge fluorine modification[J]. Journal of Magnetism and Magnetic Materials, 2020, 498:166194.
    Jafarzadeh H, Ghodrati M. Investigation of electronic and optical properties of zigzag α-graphyne nanotubes by using a tight-binding method[J]. Journal of Electronic Materials, 2019, 48(7):4669-4673.
    Leon A, Pacheco M. Electronic properties of β-graphyne bilayers[J]. Chemical Physics Letters, 2015, 620:67-72.
    Sevincli H, Sevik C. Electronic, phononic, and thermoelectric properties of graphyne sheets[J]. Applied Physics Letters, 2014, 105:223108.
    Jafari S N, Hakimi Y, Rouhi S. Molecular dynamics investigation of the mechanical properties of two different grraphyne allotropes:α2-grraphyne and 2-graphyne[J]. Physica E:Low-dimensional Systems and Nanostructures, 2020, 119:114022.
    Mortazavi B, Shahrokhi M, Madjet M E, et al. N-, B-, P-, Al-, As-, and Ga-graphdiyne/graphyne lattics:First-principles investigation of mechanical, optical and electronic properties[J]. Journal of Materials Chemistry C, 2019, 7:3025-3036.
    Cranford S W, Buehler M J. Mechanical properties of graphyne[J]. Carbon, 2011, 49:4111-4121.
    Faria B, Silvestre N, Lopes J N C. Strength and fracture of graphyne and graphdiyne nanotubes[J]. Computational Materials Science, 2020, 171:109233.
    Pei Y. Mechanical properties of graphidyne sheet[J]. Physica B:Condensed Matter, 2012, 407:4436-4439.
    Rouhi S. On the mechanical properties of the graphdiyne nanotubes:a molecular dynamics investigation[J]. Brazilian Journal of Physics, 2019, 49:654-666.
    Peng Q, Ji W, De S. Mechanical properties of graphyne monolayers:a first-principles study[J]. Physical Chemistry Chemical Physics, 2012, 14:13385-13391.
    Yang Y, Fan Z, Wei N, et al. Mechanical Properties of Hydrogen Functionalized Graphyne-A Molecular Dynamics Investigation[J]. Advanced Materials Research, 2012, 472-475:1813-1817.
    Pan H, Zhang H, Wang H, et al. Unusual mechanical and electronic behaviors of bulk layered hydrogen substituted graphdiyne under biaxial strain[J]. Applied Surface Science, 2020, 513:145694.
    Selvan K V, Hasan M N, Mohamed Ali S M. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years[J]. Journal of Electronic Materials, 2019, 48(2):745-777.
    Ouyang T, Xiao H, Xie Y, et al. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions[J]. Journal of Applied Physics, 2013, 114:073710.
    Liu C, Yang J, Xi J, et al. The origin of intrinsic charge transport for Dirac carbon sheet materials:Roles of acetylenic linkage and electron-phonon couplings[J]. Nanoscale, 2019, 11:10828-10837.
    Zhang Y Y, Pei Q X, Wang C M. A molecular dynamics investigation on thermal conductivity of graphynes[J]. Computational Materials Science, 2012, 65:406-410.
    Zhou B, Zhou B, Zhou G. Optimizing the thermoelectric performance of γ-graphyne nanoribbons via introducing disordered surface fluctutation[J]. Solid State Communications, 2019, 298:113646.
    Wang J, Zhang A J, Tang Y. Tunable thermal conductivity in carbon allotrope sheets:Role of acetylenic linkages[J]. Journal of Applied Physics, 2015, 118:195102.
    Wang S, Si Y, Yuan J, et al. Tunable thermal transport and mechanical properties of graphyne heterojunctions[J]. Physical Chemistry Chemical Physics, 2016, 18:24210-24218.
    Yue Q, Chang S, Kang J, et al. Magnetic and electronic properties of α-graphyne nanoribbons[J]. The Journal of Chemical Physics, 2012, 136:44702.
    Chen X, Gao P, Guo L, et al. Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne[J]. Journal of Physics and Chemistry of Solids, 2017, 105:61-65.
    Kang B, Ai H, Lee J Y. Single-atom vacancy induced changes in electronic and magnetic properties of graphyne[J]. Carbon, 2017, 116:113-119.
    Bhattacharya B, Singh N B, Sarkar U. Tuning the magnetic property of vancancy-defected graphyne by transition metal absorption[J]. AIP Conference Proceedings, 2015, 1665:050066.
    He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. The Journal of Physical Chemistry C, 2012, 116:26313-26321.
    Pan J, Du S, Zhang Y, et al. Ferromagnetism and perfect spin filtering in transition-metal-doped graphyne nanoribbons[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 92:205429.
    Bartolomei M, Carmona-Novillo E, Giorgi G. First principles investigation of hydrogen physical adsorption on graphynes' layers[J]. Carbon, 2015, 95:1076-1081.
    Zhang H, Zhao M, Bu H, et al. Ultra-high hydrogen storage capacity of Li-decorated graphyne:A first-principles prediction[J]. Journal of Applied Physics, 2012, 112:084305.
    Wu G, Li J, Tang C, et al. A comparative investigation of metal (Li, Ca and Sc)-decorated 6,6,12-graphyne monolayers and 6,6,12-graphyne nanotubes for hydrogen storage[J]. Applied Surface Science, 2019, 498:143763.
    Wang Y S, Yuan P F, Li M, et al. Calcium-decorated graphyne nanotubes as promising hydrogen storage media:A first-principles study[J]. Journal of Solid State Chemistry, 2013, 197:323-328.
    Mirnezhad M, Ansari R, Rouhi H, et al. Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption[J]. Solid State Communications, 2012, 152:1885-1889.
    Wang Y, Xu G, Deng S, et al. Lithium and sodium decorated graphdiyne as a candidate for hydrogen storage:First-principles and grand canonical Monte Carlo study[J]. Applied Surface Science, 2020, 509:144855.
    Lu J, Guo Y, Zhang Y, et al. A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers[J]. Journal of Solid State Chemistry, 2015, 231:53-57.
    Yeo J, Jung G S, Martín-Martínez F J, et al. Multiscale design of graphyne-based materials for high-performance separation membranes[J]. Advanced Materials, 2019, 31:1805665.
    Rezaee P, Naeij H R. Graphenylene-1 membrane:An excellent candidate for hydrogen purification and helium separation[J]. Carbon, 2020, 157:779-787.
    Zhang H, Zhao M, He X, et al. High mobility and high storage capacity of lithium in sp-sp2 hybridized carbon network:The case of graphyne[J]. The Journal of Physical Chemistry C, 2011, 115:8845-8850.
    Kim J, Kang S, Lim J, et al. Study of Li adsorption on graphdiyne using hybrid DFT calculations[J]. ACS Applied Materials & Interfaces, 2019, 11:2677-2683.
    Zhang H, Xia Y, Bu H, et al. Graphdiyne:A promising anode material for lithium ion batteries with high capacity and rate capability[J]. Journal of Applied Physics, 2013, 113:044309.
    Zhang F, Liu G, Yuan J, et al. 2D graphdiyne:An excellent untraviolet nonlinear absorption material[J]. Nanoscale, 2020, 12:6243-6249.
    Zhang X, Wang H, Wu K, et al. Two-dimensional γ-graphyne for ultrafast nonlinear optical applications[J]. Optical Materials Express, 2020, 10(2):293-301.
    Kosar N, Shehzadi K, Ayub K, et al. Theoretical study on novel superalkali doped graphdiyne complexes:Unique approach for the enhancement of electronic and nonlinear optical response[J]. Journal of Molecular Graphics and Modelling, 2020, 97:107573.
    Feng Z, Li Y, Tang Y, et al. Two-dimensional halogen-substituted graphdiyne:first-principles investigation of mechanical, electronic, optical, and photocatalytic properties[J]. Journal of Materials Science, 2020, 55:8220-8230.
    Kim C W, Kang S H, Kwon Y K. Rigid unit modes in sp-sp2 hybridized carbon systems:Origin of negative thermal expansion[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 92:245434.
    Daff T D, Collins S P, Dureckova H, et al. Evaluation of carbon nanscroll materials for post-combustion CO2 capture[J]. Carbon, 2016, 101:218-225.
    Mofidi F, Reisi-Vanani A. Investigation of the electronic and structural properties of graphyne oxide toward CO, CO2 and NH3 adsorption:A DFT and MD study[J]. Applied Surface Science, 2020, 507:145134.
    Kim S, Lee J Y. Doping and vacancy effect of graphyne on SO2 adsorption[J]. Journal of Colloid and Interface Science, 2017, 493:123-129.
    Mehran S. Rouhi S, Salmalian K. Molecular dynamics simulations of the adsorption of polymer chains on graphyne and its family[J]. Physica B:Condensed Matter, 2015, 456:41-49.
    Karami A R. Density functional theory study of acrolein adsorption on graphyne[J]. Canadian Journal of Chemistry, 2015, 93:1261-1265.
    Qiu H, Xue M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials, 2019, 31:1803772.
    Zhang X, Gai J G. Single-layer graphyne membranes for super-excellent brine separation in forward osmosis[J]. RSC Advances, 2015, 5:68109-68116.
    李加强, 张锦. 石墨炔负载金属原子催化剂研究进展[J]. 科学通报, 2019, 64(35):3649-3664. (LI Jia-qiang, ZHANG Jin. Advances of graphdiyne supported metal atomic catalysts[J]. Chinese Science Bulletin, 2019, 64(35):3694-3664.)
    Yu H, Xue Y, Huang B, et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production[J]. Science, 2019, 11:31-41.
    Majidi R, Karami A R. Detection of hydrogen peroxide with graphyne[J]. Physica E:Low-dimensional Systems and Nanostructures, 2015, 54:177-180.
    Karami A, Majidi R. Detection of toxic gases with graphyne nanotubes:A density functional theory study[J]. Chemistry Letters, 2015, 44:1071-1073.
    Omidvar A, Mohajeri A. Decorated graphyne and its boron nitride analogue as versatile nanomaterials for CO detection[J]. Molecular Physics, 2015, 113(23):3900-3908.
    Chen X, Gao P, Guo L, et al. Graphdiyne as a promising material for detecting amino acids[J]. Scientific Reports, 2015, 5:16720.
    Feng M, Bell D R, Luo J, et al. Impact of graphyne on structural and dynamic properties of calmodulin[J]. Physical Chemistry Chemical Physics, 2017, 19(15):10187-10195.
    Zhang L, Wang X. Mechanisms of graphyne-enabled cholesterol extraction from protein clusters[J]. RSC Advances, 2015, 5:11776-11785.
    Zhang Y, Zhu G, Lu J, et al. Graphyne as a promising substrate for high density magnetic storage bits[J]. RSC Advances, 2015, 5:87841-87846.
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46:3256-3258.
    Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society, 2015, 137:7596-7599.
    Wang S S, Liu H B, Kan X N, et al. Superlyophilicity-facilitated synthesis reaction at the microscale:ordered graphdiyne stripe arrays[J]. Small, 2017, 13(4):1602265.
    Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139:3145-3152.
    Du H, Deng Z, Lv Z, et al. The effect of graphdiyne doping on the performance of polymer solar cells[J]. Synthetic Metals, 2011, 161:2055-2057.
    Kuang C, Tang G, Jiu T, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 2015, 15:2756-2762.
    Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications, 2015, 51:1834-1837.
    Huang C, Zhang S, Liu H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11:481-489.
    Yang N, Liu Y, Wen H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2:From theory to experiment[J]. ACS Nano, 2013, 7:1504-1512.
    Wang S, Yi L, Halpert J E, et al. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J]. Small, 2012, 8:265-271.
    Zhang X, Zhu M, Chen P, et al. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent[J]. Physical Chemistry Chemical Physics, 2015, 17:1217-1225.
    Liu R, Liu H, Li Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6:11336-11343.
    Li G, Li Y, Qian X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. The Journal of Physical Chemistry C, 2011, 115:2611-2615.
    Parvin N, Jin Q, Wei Y, et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection[J]. Advanced Materials, 2017, 29(18):1606755.
    Zhang Y Q, Kep?ija N, Kleinschrodt M, et al. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nature Communications, 2012, 3:1286.
    Cirera B, Zhang Y Q, Klyatskaya S, et al. 2D self-assembly and catalytic homo-coupling of the terminal alkyne 1,4-bis(3,5-diethynyl-phenyl)butadiyne-1,3 on Ag(111)[J]. ChemCatChem, 2013, 5:3281-3288.
    Cirera B, Zhang Y Q, Björk J, et al. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Letters, 2014, 14:1891-1897.
    Björk J, Zhang Y Q, Klappenberger F, et al. Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal[J]. The Journal of Physical Chemistry C, 2014, 118:3181-3187.
    Liu J, Chen Q, Xiao L, et al. Lattice-directed formation of covalent and organomtallic molecular wires by terminal alkynes on Ag surfaces[J]. ACS Nano, 2015, 9:6305-6314.
    Klappenberger F, Zhang Y Q, Björk J, et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes[J]. Accounts of Chemical Research, 2015, 48:2140-2150.
    Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclic π-systems:scaffoldings for novel two and three-dimensional carbon networks[J]. Chemical Society Reviews, 1999, 28:107-119.
    Marsden J A, Palme G J, Haley M M. Synthetic strategies for dehydrobenzo[n] annulenes[J]. European Journal of Organic Chemistry, 2003, 2003:2355-2369.
    Gholami M, Melin F, McDonald R, et al. Synthesis and characterization of expanded radialenes, bisradialenes, and radiaannulenes[J]. Angewandte Chemie International Edition, 2007, 46:9081-9085.
    Yoshimura T, Inaba A, Sonoda M, et al. Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo
    annulene) and tris(tetradehydrotribenzo
    annulene)[J]. Organic Letters, 2006, 8:2933-2936.
    Haley M M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures[J]. Pure and Applied Chemistry, 2008, 80:519-532.
    Lu Z, Li S, Lv P, et al. First principles study on the interfacial properties of NM/graphdiyne (NM=Pd, Pt, Rh and Ir):the implications for NM growing[J]. Applied Surface Science, 2016, 360:1-7.
    Lazi? P, Crljen ?. Graphyne on metallic surfaces:A density functional theory study[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 91:125423.
    Tang Y, Yang H, Yang P. Investigation on the contact between graphdiyne and Cu(111) surface[J]. Carbon, 2017, 117:246-251.
    Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials, 2017, 29:1604665.
    Diederich F, Rubin Y. Synthetic approaches toward molecular and polymeric carbon allotropes[J]. Angewandte Chemie International Edition, 1992, 31:1101-1123.
  • 加载中
图(1)
计量
  • 文章访问数:  1468
  • HTML全文浏览量:  585
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-11-01
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回