留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯腈基炭纤维对比分析:(二)结构与性能的关联性

郝俊杰 吕春祥 李登华

郝俊杰, 吕春祥, 李登华. 聚丙烯腈基炭纤维对比分析:(二)结构与性能的关联性. 新型炭材料, 2020, 35(6): 802-810. doi: 10.1016/S1872-5805(20)60528-5
引用本文: 郝俊杰, 吕春祥, 李登华. 聚丙烯腈基炭纤维对比分析:(二)结构与性能的关联性. 新型炭材料, 2020, 35(6): 802-810. doi: 10.1016/S1872-5805(20)60528-5
HAO Jun-jie, LU Chun-xiang, LI Deng-hua. A comparative analysis of polyacrylonitrile-based carbon fibers: (Ⅱ) Relationship between the microstructures and properties. New Carbon Mater., 2020, 35(6): 802-810. doi: 10.1016/S1872-5805(20)60528-5
Citation: HAO Jun-jie, LU Chun-xiang, LI Deng-hua. A comparative analysis of polyacrylonitrile-based carbon fibers: (Ⅱ) Relationship between the microstructures and properties. New Carbon Mater., 2020, 35(6): 802-810. doi: 10.1016/S1872-5805(20)60528-5

聚丙烯腈基炭纤维对比分析:(二)结构与性能的关联性

doi: 10.1016/S1872-5805(20)60528-5
基金项目: 山西省重点研发计划项目(201903D121005);山西省科技重大专项(20181101019).
详细信息
    作者简介:

    郝俊杰,博士,工程师.E-mail:haojj@tisco.com.cn

    通讯作者:

    李登华,博士,高级工程师.E-mail:yob2846@163.com

  • 中图分类号: TQ324+.74

A comparative analysis of polyacrylonitrile-based carbon fibers: (Ⅱ) Relationship between the microstructures and properties

Funds: Key Research and Development (R&D) Projects of Shanxi Province (201903D121005); Science and Technology Major Project of Shanxi Province (20181101019).
  • 摘要: 以典型聚丙烯腈基炭纤维为研究对象,结合弹性解皱模型、Griffith微裂纹理论等探讨了炭纤维的力学性能与微观结构的关联性。分别分析了微晶结构及其择优取向对拉伸模量、孔结构及质量密度起伏对拉伸强度、内部残余压缩应力对断裂伸长率的影响关系,确认了上述对炭纤维力学性能起关键影响作用的结构因素,并据此探讨了炭纤维的拉伸断裂机制。
  • Ruland W. Carbon fibers[J]. Advanced Materials, 1990, 2(11):528-536.
    Jahromi S G, Khodaii A. Carbon fiber reinforced asphalt concrete[J]. Arabian Journal Forence & Engineering, 2008, 33(2):355-564.
    Böhm R, Thieme M, Wohlfahrt D, et al. Reinforcement systems for carbon concrete composites based on low-cost carbon fibers[J]. Fibers, 2018, 6(3):56.
    Hou X, Cheng W, Chen N, et al. Preparation of a high performance carbon/carbon composite throat insert woven with axial carbon rods[J]. New Carbon Materials, 2013, 28(5):355-362.
    Yang Y H, Pan Y X, Feng Z H, et al. Evaluation of aerospace carbon fibers[J]. New Carbon Materials, 2014, 29(3):161-168.
    He F. Carbon Fibre and Graphite fibre[M]. Beijing:Chemical Industry Press, 2010.
    Kobets L, Deev I. Carbon fibres:Structure and mechanical properties[J]. Composites Science and Technology, 1998, 57(12):1571-80.
    Guigon M, Oberlin A. Heat-treatment of high tensile strength PAN-based carbon fibres:Microtexture, structure and mechanical properties[J]. Fibre Science Technology, 1986, 27(1):1-23.
    Paris O, Loidl D, Peterlik H. Texture of PAN-and pitch-based carbon fibers[J]. Carbon, 2002, 40(4):551-555.
    Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92(8):1421-1432.
    Li D H, Lu C X, Wu G P, et al. Structural evolution during the graphitization of polyacrylonitrile-based carbon fiber as revealed by small-angle X-ray scattering[J]. Journal of Applied Crystallography, 2014, 47(6):1809-18.
    Li D H, Lu C X, Du S J, et al. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering[J]. Applied Physics A, 2016, 122(11):956.
    Li D H, Lu C X, Wu G P, et al. Heat-induced Internal Strain Relaxation and its Effect on the Microstructure of Polyacrylonitrile-based Carbon Fiber[J]. Journal of Materials Science & Technology, 2014, 30(10):1051-1058.
    Li D H, Lu C X, Wu G P, et al. Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers[J]. RSC Advances, 2014, 4(105):60648-51.
    Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221(1921):163-198.
    Phillips D C. The fracture energy of carbon-fibre reinforced glass[J]. Journal of Materials Science, 1972, 7(10):1175-1191.
    Ruland, W. X-Ray Studies on Preferred orientation in carbon fibers[J]. Journal of Applied Physics, 1967, 38(9):3585-3589.
    Ruland W. Small-angle scattering of two-phase systems:determination and significance of systematic deviations from porod's Law[J]. Journal of Applied Crystallography, 1971, 4(1):70-73.
    Northolt M G, Veldhuizen L H, Jansen H. Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes[J]. Carbon, 1991, 29(8):1267-1279.
    Ruland W. The relationship between preferred orientation and Young's modulus of carbon fibers; proceedings of the Appl Polym Symp, F, 1969[C]. American Chemical Society.
    Fischer L, Ruland W. The influence of graphitization on the mechanical properties of carbon fibers[J]. Colloid and Polymer Science, 1980, 258(8):917-922.
    Li D H, Lu C X, Wang L N, et al. A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science and Engineering:A, 2017, 685(2017):65-70.
    Wang D S, Chang S Y, Huang Y C, et al. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces[J]. Carbon, 2014, 74(0):302-311.
    Zaldivar R J, Rellick G S. Some observations on stress graphitization in carbon-carbon composites[J]. Carbon, 1991, 29(8):1155-1163.
    Liu F J, Wang H J, Xue L, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. Journal of Materials Science, 2008, 43(12):4316-4322.
    Kobayashi T, Sumiya K, Fukuba Y, et al. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49(5):1646-1652.
    Kobayashi T, Sumiya K, Fujii Y, et al. Stress concentration in carbon fiber revealed by the quantitative analysis of X-ray crystallite modulus and Raman peak shift evaluated for the variously-treated monofilaments under constant tensile forces[J]. Carbon, 2013, 53(0):29-37.
  • 加载中
图(1)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  138
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-07-01
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回