留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以磁性碳纳米球为载体的锂离子印迹吸附剂用于锂离子的选择性回收

梁琦 张二辉 闫光 杨永珍 刘伟峰 刘旭光

梁琦, 张二辉, 闫光, 杨永珍, 刘伟峰, 刘旭光. 以磁性碳纳米球为载体的锂离子印迹吸附剂用于锂离子的选择性回收. 新型炭材料, 2020, 35(6): 696-706. doi: 10.1016/S1872-5805(20)60533-9
引用本文: 梁琦, 张二辉, 闫光, 杨永珍, 刘伟峰, 刘旭光. 以磁性碳纳米球为载体的锂离子印迹吸附剂用于锂离子的选择性回收. 新型炭材料, 2020, 35(6): 696-706. doi: 10.1016/S1872-5805(20)60533-9
LIANG Qi, ZHANG Er-hui, YAN Guang, YANG Yong-zhen, LIU Wei-feng, LIU Xu-guang. A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions. New Carbon Mater., 2020, 35(6): 696-706. doi: 10.1016/S1872-5805(20)60533-9
Citation: LIANG Qi, ZHANG Er-hui, YAN Guang, YANG Yong-zhen, LIU Wei-feng, LIU Xu-guang. A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions. New Carbon Mater., 2020, 35(6): 696-706. doi: 10.1016/S1872-5805(20)60533-9

以磁性碳纳米球为载体的锂离子印迹吸附剂用于锂离子的选择性回收

doi: 10.1016/S1872-5805(20)60533-9
基金项目: 科技部国家重点研发计划(2017YFB0603104);国家自然科学基金(U1607120,U1610255,51603142);山西省重点研发计划国际合作项目(201903D421077).
详细信息
    作者简介:

    梁琦,硕士研究生.E-mail:2498435356@qq.com

    通讯作者:

    杨永珍,博士,教授.E-mail:yyztyut@126.com;刘伟峰,博士,副教授.E-mail:lwf061586@yeah.net

  • 中图分类号: TB33

A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions

Funds: National Key Research and Development Program of China (2017YFB0603104), National Natural Science Foundation of China (U1607120, U1610255, 51603142), Key R&D Program of Shanxi Province (International Cooperation, 201903D421077).
  • 摘要: 以磁性碳纳米球(Fe3O4@C)为载体,2-羟甲基-12-冠醚-4为吸附单元,采用表面离子印迹技术设计并制备了对Li+具有选择性吸附的磁性碳基锂离子印迹材料(Li+-IIP-Fe3O4@C)。首先,采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷对Fe3O4@C进行改性,得到硅烷化Si-Fe3O4@C。接着用甲基丙烯酸(MAA)对Si-Fe3O4@C进行功能化,得到形貌规整且具有较高MAA接枝度的PMAA-Fe3O4@C。然后,借助催化剂对甲苯磺酸将2-羟甲基-12-冠醚-4接枝到PMAA-Fe3O4@C的表面,进一步在二甲基丙烯酸乙二醇酯的交联聚合下得到Li+-IIP-Fe3O4@C。动力学吸附和等温吸附结果表明,Li+的吸附符合准二级动力学模型和Langmuir等温模型。Li+-IIP-Fe3O4@C在25℃下对Li+的最大吸附容量达到22.26 mg g-1。Li+相对于Na+,K+和Mg2+的选择因子分别为8.06、5.72和2.75。经6次吸附-解吸循环,Li+-IIP-Fe3O4@C的吸附容量仅降低了8.8%,表现出优异的再生性能。
  • Martin G, Rentsch L, Höck M, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6:171-179.
    Swain B. Recovery and recycling of lithium:A review[J]. Separation and Purification Technology, 2017, 172:388-403.
    Xiang W, Liang S K, Zhou Z Y, et al. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J]. Hydrometallurgy, 2016, 166:9-15.
    Liu D H, Gao X Y, An H Z, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources, Conservation and Recycling, 2019, 145:311-321.
    Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines:Opportunities, challenges, and future outlook[J]. Environmental Science:Water Research & Technology, 2017, 3:593-597.
    Wang S L, Zheng S L, Wang Z M, et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J]. Chemical Engineering Journal, 2018, 332:160-168.
    Özgür C. Preparation and characterization of LiMn2O4 ion-sieve with high Li+ adsorption rate by ultrasonic spray pyrolysis[J]. Solid State Ionics 2010, 181:1425-1428.
    Wang L, Ma W, Liu R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics 2006, 177:1421-1428.
    Zhang L C, Li L J, Shi D, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J]. Hydrometallurgy 2018, 175:35-42.
    Gao D L, Yu X P, Guo Y F, et al. Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene[J]. Chemical Research in Chinese Universities, 2015, 31:621-626.
    Chen P, Tang S Y, Yue H R, et al. Lithium enrichment of high Mg/Li ratio brine by precipitation of magnesium via combined CO2 mineralization and solvent extraction[J]. Industrial & Engineering Chemistry Research, 2017, 56:5668-5678.
    Zheng M P, Zhang Y S, Liu X F, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica-English Edition, 2016, 90:1195-1235.
    Huang W, Liu S C, Liu J X, et al. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium (I)[J]. New Journal of Chemistry, 2018, 42:16814-16822.
    Xu J C, Pu Z L, Xu X C, et al. Simultaneous adsorption of Li (I) and Rb (I) by dual crown ethers modified magnetic ion imprinting polymers[J]. Applied Organometallic Chemistry, 2019, 33:e4778.
    Yang Y Z, Liu X G, Xu B S. Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils[J]. New Carbon Materials, 2014, 29(1):1-14.
    Zhao X F, Duan F F, Cui P P, et al. A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin[J]. New Carbon Materials, 2018, 33(6):529-543.
    Saloni J, Walker K, Glake H, et al. Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds[J]. The Journal of Physical Chemistry A, 2013, 117:1531-1534.
    Zhai Y H, Liu Y W, Chang X J, et al. Selective solid-phase extraction of trace cadmium (II) with an ionic imprinted polymer prepared from a dual-ligand monomer[J]. Analytica Chimica Acta, 2007, 593:123-128.
    Diao K S, Wang H J, Qiu Z M, A DFT study on the selective extraction of metallic ions by 12-crown-4[J]. Journal of Solution Chemistry, 2009, 38:713-724.
    Mehrdad Y, Mir M Z, Morteza Z. Lithium removal from seawater via liquid membrane transport using 12-crown-4 as a carrier and study of the effect of carbon nanotubes as a membrane additive[J]. Analytical Methods, 2019, 11:2720-2725.
    Sun D S, Zhu Y Z, Meng M J, et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion[J]. Separation and Purification Technology, 2017, 175:19-26.
    Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism:a review[J]. Journal of Chemical Technology & Biotechnology, 2016, 91:2549-2562.
    Calvo Muñoz E M, García Mateos F J, Rosas J M, et al. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions[J]. Frontiers in Materials, 2016, 3:23.
    Beralus J M, Ruiz Rosas R, Cazorla Amorós D, et al. Electroadsorption of arsenic from natural water in granular activated carbon[J]. Frontiers in Materials, 2014, 1:28.
    Cui J Y, Zhou Z P, Liu S J, et al. Synthesis of cauliflower-like ion imprinted polymers for selective adsorption and separation of lithium ion[J]. New Journal of Chemistry, 2018, 42:14502-14509.
    Luo X B, Guo B, Luo J M, et al. Recovery of lithium from wastewater using development of Li ion-imprinted polymers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3:460-467.
    Huang Y, Wang R. An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water[J]. Journal of Cleaner Production, 2018, 205:201-209.
    Wang J, Zhang W H, Qian Y C, et al. pH, temperature, and magnetic triple-responsive polymer porous microspheres for tunable adsorption[J]. Macromolecular Materials and Engineering, 2016, 301:1132-1141.
    Yang Y Z, Song J J, Han Y X, et al. Self assembly of SiO2-encapsulated carbon microsphere composites[J]. Applied Surface Science, 2011, 257:7326-7329.
    Xue B X, Niu M, Yang Y Z, et al. Multi-functional carbon microspheres with double shell layers for flame retardant poly (ethylene terephthalate)[J]. Applied Surface Science, 2018, 435:656-665.
    Shi W P, Liu W F, Chen L, et al. Effect of annealing temperature on the structure of carbon encapsulated Fe3O4 nanospheres[J]. RSC Advances, 2015, 5:106787-106794.
    Liu W F, Qin L, An Z L, et al. Thermo-responsive ion imprinted polymer on the surface of magnetic carbon microspheres for identification and removal of low-concentrations of Cu2+[J]. Environmental Chemistry, 2018, 15:306-316.
    Wang Y Y, Xu J C, Yang D Y, et al. Calix
    arenes functionalized dual-imprinted mesoporous film for the simultaneous selective recovery of lithium and rubidium[J]. Applied Organometallic Chemistry, 2018, 32:e4511.
    Hashemi B, Shamsipur M, Seyedzadeh Z. Synthesis of ion imprinted polymeric nanoparticles for selective pre-concentration and recognition of lithium ions[J]. New Journal of Chemistry, 2016, 40:4803-4809.
  • 加载中
图(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  238
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-04-20
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回