留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: Synthesis, properties and their mutual transformation

WANG Yang WANG Wei-hua YANG Shi-lin SHU Guo-yang DAI Bing ZHU Jia-qi

王杨, 王伟华, 杨世林, 舒国阳, 代兵, 朱嘉琦. 两种极限粒度的金刚石:从大尺寸单晶到纳米晶. 新型炭材料, 2021, 36(3): 512-526. doi: 10.1016/S1872-5805(21)60030-6
引用本文: 王杨, 王伟华, 杨世林, 舒国阳, 代兵, 朱嘉琦. 两种极限粒度的金刚石:从大尺寸单晶到纳米晶. 新型炭材料, 2021, 36(3): 512-526. doi: 10.1016/S1872-5805(21)60030-6
WANG Yang, WANG Wei-hua, YANG Shi-lin, SHU Guo-yang, DAI Bing, ZHU Jia-qi. Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: Synthesis, properties and their mutual transformation. New Carbon Mater., 2021, 36(3): 512-526. doi: 10.1016/S1872-5805(21)60030-6
Citation: WANG Yang, WANG Wei-hua, YANG Shi-lin, SHU Guo-yang, DAI Bing, ZHU Jia-qi. Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: Synthesis, properties and their mutual transformation. New Carbon Mater., 2021, 36(3): 512-526. doi: 10.1016/S1872-5805(21)60030-6

两种极限粒度的金刚石:从大尺寸单晶到纳米晶

doi: 10.1016/S1872-5805(21)60030-6
基金项目: 国家自然科学基金(No. 51911530123, 51702066);国家杰出青年基金(No. 51625201);国家重点研发计划(No. 2020YFA0709700)
详细信息
    通讯作者:

    朱嘉琦,教授,E-mail:zhujq@hit.edu.cn

  • 中图分类号: O781

Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: Synthesis, properties and their mutual transformation

More Information
  • 摘要: 作为具有各种极端特性的金刚石材料的两种晶态,宏观大尺寸块体单晶金刚石和微观纳米单晶金刚石均因其优异的性能,引发了研究者们的持续关注。近些年来,两类金刚石的制备方法不断得到改进,其性能改善的技术层出不穷,更多的应用领域已被开发或处于探索之中。两种尺度的单晶金刚石在性能上各有千秋,同时二者之间具有千丝万缕的联系,两种晶态对应的晶粒尺度之间可以发生可控的互相转化。可以将块体单晶金刚石的合成过程描述为纳米晶的聚集、自组装和定向附着生长,从而从纳米晶转化为英寸级大单晶形态。反之,亦可以通过表面纳米化的方法将大尺寸单晶转化为纳米晶。本文介绍了两种不同尺度单晶金刚石的制备方法、性能和应用,对块体单晶和纳米晶之间的相互转化方式进行了重点阐述,并对这两种尺度的金刚石晶体的粒度调控等研究方向进行了说明和展望。通过晶态转化和粒度调控,可以实现生长过程中对产物形貌和粒度的设计,从而制备出新的结构或功能材料,同时促进晶体生长理论的完善。
  • FIG. 671.  FIG. 671.

    FIG. 671.. 

    Figure  1.  Principle of single crystal diamond growth by CVD[28-34], the background diagram showing the reactions during the generation of radicals in the chamber, (a)-(f) display six of the most common devices which call for high-quality, large-scale diamond wafer. Reprinted with permission.

    Figure  2.  Infrared transmissivity of single crystal (SC) and polycrystal (PC) diamond samples, the SC samples were produced by HPHT and CVD methods.

    Figure  3.  Detonation synthesis of nanodiamonds: (a) explosive reactants are detonated in a closed metallic chamber to form diamond-containing soot and (b) schematic of the detonation wave propagation, in which molecules form carbon nanoclusters, coagulate into liquid nanodroplets, and finally turn into nanodiamonds by crystallization, growth and agglomeration[56]. Reprinted with permission.

    Figure  4.  Surface modification of nanodiamond for potential medical applications: (a) the ability of bonding with various functional groups on the surface and (b) nanodiamonds as a drug delivery platform[74]. Reprinted with permission.

    Figure  5.  Growth of large-size single crystal diamond from connection of nanocrystals, the main steps of growth process are shown by the ring in the middle: (a) dissolution-precipitation process of C atoms[27], (b) formation of a primitive nucleus[27], (c) self-assembly of primitive nuclei, (d) oriented attachment and disappearance of boundaries[89]and (e) formation of a secondary nucleus[27]. Reprinted with permission.

    Figure  6.  Process of single crystal diamond growth: (a) several routes toward bulk single crystal diamond, including OA and nearly-OA growth[98], (b) laser scanning microscopic cross section morphology of homogeneous epitaxial diamond, in which different crystal forms from nanocrystal to single crystal can be seen from the bottom to the top[99]. Reprinted with permission.

    Figure  7.  The ways of diamond surface nanocrystallization: (a) top-down preparation of diamond nanowires, Ni was used as a mask during the etching of HPHT bulk crystal to obtain nearly vertical arrayed single crystal nanowires[125], (b) a secondary anvil is formed by adding nanodiamonds to the single crystal diamond anvil cell (NCDs on SCD) [126], (c) post growth of single crystal diamond on micro- or nano-needles, which can effectively improve the epitaxial quality[117]and (d) patterned nucleation and growth on a foreign substrate, which is equivalent to the regular preset of crystal nuclei[123]. Reprinted with permission.

  • [1] Zhu D, Bandy J A, Li S, et al. Amino-terminated diamond surfaces: Photoelectron emission and photocatalytic properties[J]. Surface Science,2016,650:295-301. doi: 10.1016/j.susc.2016.01.003
    [2] Sedov V, Martyanov A, Savin S, et al. Growth of polycrystalline and single-crystal CVD diamonds with bright photoluminescence of Ge-V color centers using germane GeH4 as the dopant source[J]. Diamond and Related Materials,2018,90:47-53. doi: 10.1016/j.diamond.2018.10.001
    [3] An K, Chen L, Liu J, et al. The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD[J]. Plasma Science and Technology,2017,19(9):095505. doi: 10.1088/2058-6272/aa7458
    [4] Hemawan K W, Gou H, Hemley R J. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition[J]. Applied Physics Letters,2015,107(18):301-210.
    [5] Wanninayake N, Ai Q, Zhou R, et al. Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction[J]. Carbon,2020,157:408-419. doi: 10.1016/j.carbon.2019.10.022
    [6] Lobaev M A, Gorbachev A M, Vikharev A L, et al. Investigation of boron incorporation in delta doped diamond layers by secondary ion mass spectrometry[J]. Thin Solid Films,2018,653:215-222. doi: 10.1016/j.tsf.2017.12.008
    [7] Higashi N O, Ichi-oka H A, Miyake T, et al. Growth mechanisms of carbon nanofilaments on Ni-loaded diamond catalyst[J]. Diamond and Related Materials,2008,17(3):283-293. doi: 10.1016/j.diamond.2007.12.046
    [8] Dai B, Shu G, Ralchenko V, et al. 2D inverse periodic opal structures in single crystal diamond with incorporated silicon-vacancy color centers[J]. Diamond and Related Materials,2017,73:204-209. doi: 10.1016/j.diamond.2016.09.022
    [9] Tallaire A, Lesik M, Jacques V, et al. Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers[J]. Diamond and Related Materials,2015,51:55-60. doi: 10.1016/j.diamond.2014.11.010
    [10] Bolshakov A P, Ralchenko V G, Yurov V Y, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation[J]. Diamond and Related Materials,2016,62:49-57. doi: 10.1016/j.diamond.2015.12.001
    [11] Irifune T, Kunimoto T, Shinmei T, et al. High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils[J]. Comptes Rendus Geoscience,2019,351(2-3):260-268. doi: 10.1016/j.crte.2018.07.005
    [12] Liu K, Dai B, Ralchenko V, et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity[J]. Sensors and Actuators A: Physical,2017,259:121-126. doi: 10.1016/j.sna.2017.01.027
    [13] Boussadi A, Tallaire A, Kasu M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector[J]. Diamond and Related Materials,2018,83:162-169. doi: 10.1016/j.diamond.2018.02.010
    [14] Chen N, Zhang G, Li R, et al. Defect and stress reduction in high-pressure and high-temperature synthetic diamonds using gradient cooling technology[J]. Crystal Growth & Design,2020,20(5):3358-3364.
    [15] Botsoa J, Sauvage T, Courtois B, et al. Study of nitrogen content in HPHT diamond by nuclear reaction analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2019,450:315-318. doi: 10.1016/j.nimb.2018.05.032
    [16] Yunin P A, Volkov P V, Drozdov Y N, et al. Study of the structural and morphological properties of HPHT diamond substrates[J]. Semiconductors,2018,52(11):1432-1436. doi: 10.1134/S1063782618110271
    [17] Yan L, Ma Z B, Chen L, et al. Homoepitaxial growth of single crystal diamond by microwave plasma chemical vapor deposition[J]. New Carbon Materials,2017,32(1):92-96.
    [18] Nad S, Asmussen J. Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD[J]. Diamond and Related Materials,2016,66:36-46. doi: 10.1016/j.diamond.2016.03.007
    [19] Bogdanov S A, Gorbachev A M, Radishev D B, et al. Contraction of microwave discharge in the reactor for chemical vapor deposition of diamond[J]. Technical Physics Letters,2019,45(2):89-92. doi: 10.1134/S1063785019020032
    [20] Wu G, Chen M H. The influence of seed crystals on the quality of single-crystal diamond produced by a microwave plasma CVD method[J]. New Carbon Materials,2018,33(1):88-96.
    [21] Muehle M, Asmussen J, Becker M F, et al. Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr[J]. Diamond and Related Materials,2017,79:150-163. doi: 10.1016/j.diamond.2017.09.013
    [22] Mokuno Y, Chayahara A, Yamada H, et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation[J]. Diamond and Related Materials,2009,18(10):1258-1261. doi: 10.1016/j.diamond.2009.04.005
    [23] Shu G, Dai B, Ralchenko V G, et al. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy[J]. Journal of Crystal Growth,2017,463:19-26. doi: 10.1016/j.jcrysgro.2017.01.045
    [24] Yamada H, Chayahara A, Mokuno Y, et al. Effects of crystallographic orientation on the homoepitaxial overgrowth on tiled single crystal diamond clones[J]. Diamond and Related Materials,2015,57:17-21. doi: 10.1016/j.diamond.2015.01.007
    [25] Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching[J]. Thin Solid Films,2016,600:142-145. doi: 10.1016/j.tsf.2016.01.009
    [26] Lee K H, Saada S, Arnault J-C, et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy[J]. Diamond and Related Materials,2016,66:67-76. doi: 10.1016/j.diamond.2016.03.018
    [27] Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports,2017,7:44462. doi: 10.1038/srep44462
    [28] Kasu M. Diamond epitaxy: Basics and applications[J]. Progress in Crystal Growth and Characterization of Materials,2016,62(2):317-328. doi: 10.1016/j.pcrysgrow.2016.04.017
    [29] Feng B, Levitas V I, Hemley R J. Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells[J]. International Journal of Plasticity,2016,84:33-57. doi: 10.1016/j.ijplas.2016.04.017
    [30] Zhao Y, Liu H, Yu T, et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation[J]. Optics & Laser Technology,2021,140:107014.
    [31] Suter D, Jelezko F. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2017,98-99:50-62. doi: 10.1016/j.pnmrs.2016.12.001
    [32] Ishizaka H, Tachiki M, Song K-S, et al. Cryogenic operation of surface-channel diamond field-effect transistors[J]. Diamond and Related Materials,2003,12(10):1800-1803.
    [33] Johnson S, Dolan P R, Smith J M. Diamond photonics for distributed quantum networks[J]. Progress in Quantum Electronics,2017,55:129-165. doi: 10.1016/j.pquantelec.2017.05.003
    [34] Zhang Z, Huang J, Xi Y, et al. CVD diamond film detectors for α particles with a new electrode structure of reduced graphene oxide/Au[J]. Materials Science in Semiconductor Processing,2019,91:260-266. doi: 10.1016/j.mssp.2018.11.027
    [35] Malykhin S A, Ismagilov R R, Tuyakova F T, et al. Photoluminescent properties of single crystal diamond microneedles[J]. Optical Materials,2018,75:49-55. doi: 10.1016/j.optmat.2017.10.019
    [36] Feng Z, Xiong Y, Wang B, et al. Structure and IR transmittance of optical diamond film prepared by microwave plasma CVD with different CO2 contents[J]. Chinese Journal of Rare Metals,2015,39(5):428-434.
    [37] Su Q F, Xia Y B, Wang L J, et al. Studies on infrared spectroscopic ellipsometry of different oriented CVD diamond films[J]. Journal of Infrared and Millimeter Waves,2006,25(2):86-89.
    [38] Kampfer S, Cho N, Combs S E, et al. Dosimetric characterization of a single crystal diamond detector in X-ray beams for preclinical research[J]. Ztschrift Fur Medizinische Physik,2018,28(4):303-309. doi: 10.1016/j.zemedi.2018.05.002
    [39] Zhou H, Yuan B, Lyu J, et al. A novel approach of deposition for uniform diamond films on circular saw blades[J]. Plasma Science and Technology,2017,19(11):115502. doi: 10.1088/2058-6272/aa894a
    [40] Zou L, Yin J, Huang Y, et al. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J]. Diamond and Related Materials,2018,86:29-40. doi: 10.1016/j.diamond.2018.04.012
    [41] Liu X C, Ge X G, Li Y F, et al. Preparation of single crystal diamond windows for small angle scattering in situ loading test[J]. Journal of Synthetic Crystals,2019,48(11):1992-1998.
    [42] Jenei Z, O'Bannon E F, Weir S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar[J]. Nature Communications,2018,9(1):3563. doi: 10.1038/s41467-018-06071-x
    [43] Wang J J, He Z Z, Yu C, et al. Comparison of field-effect transistors on polycrystalline and single-crystal diamonds[J]. Diamond and Related Materials,2016,70:114-117. doi: 10.1016/j.diamond.2016.10.016
    [44] Arnault J C, Lee K H, Delchevalrie J, et al. Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond and Related Materials,2020,105:107768. doi: 10.1016/j.diamond.2020.107768
    [45] Zhang R, Zhao W S, Yin W Y, et al. Impacts of diamond heat spreader on the thermo-mechanical characteristics of high-power AlGaN/GaN HEMTs[J]. Diamond and Related Materials,2015,52:25-31. doi: 10.1016/j.diamond.2014.12.001
    [46] Shvidchenko A V, Eidelman E D, Vul A Y, et al. Colloids of detonation nanodiamond particles for advanced applications[J]. Advances in Colloid & Interface Science,2019,268:64-81.
    [47] Yang Y D, Xu J H, Yang L M. Preparation of a nanodiamond colloid from nanodiamond powder resulting from explosive detonation[J]. New Carbon Materials,2015,30(2):181-185.
    [48] Kwon H, Park J, Leparoux M. Dispersion behavior and size analysis of thermally purified high pressure-high temperature synthesized nanodiamond particles[J]. Journal of Korean Powder Metallurgy Institute,2017,24(3):216-222. doi: 10.4150/KPMI.2017.24.3.216
    [49] Yagi T, Utsumi W, Yamakata M A, et al. High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature[J]. Physical Review B,1992,46(10):6031-6039. doi: 10.1103/PhysRevB.46.6031
    [50] Nian Q, Wang Y, Yang Y, et al. Direct laser writing of nanodiamond films from graphite under ambient conditions[J]. Scientific Reports,2014,4(1):6612.
    [51] Woo D J, Sneed B, Peerally F, et al. Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray[J]. Carbon,2013,63(15):404-415.
    [52] Ge D Y, Zhao Q X, Yang B Z, et al. Synthesis of nanodiamond films by GPCVD technique at low temperature[J]. Research and Exploration in Laboratory,2011,30(8):22-24.
    [53] Yang G W, Wang J B. Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite[J]. Applied Physics A,2001,72(4):475-479. doi: 10.1007/s003390000537
    [54] Khachatryan A K, Aloyan S G, May P W, et al. Graphite-to-diamond transformation induced by ultrasound cavitation[J]. Diamond and Related Materials,2008,17(6):931-936. doi: 10.1016/j.diamond.2008.01.112
    [55] Itshak-Levy D, Israel L L, Schmerling B, et al. Disaggregation, stabilization, and innovative functionalization/surface engineering of detonation nanodiamonds via ultrasonication-promoted ceric ammonium nitrate treatment[J]. Diamond and Related Materials,2020,104:107738. doi: 10.1016/j.diamond.2020.107738
    [56] Mochalin V N, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology,2011,7(1):11-23.
    [57] Batsanov S S, Osavchuk A N, Naumov S P, et al. Novel synthesis and properties of hydrogen-free detonation nanodiamond[J]. Materials Chemistry and Physics,2018,216:120-129. doi: 10.1016/j.matchemphys.2018.05.072
    [58] Gruen D M, Shenderova O A, Vul' A Y, et al. Synthesis, Properties and Applications of Ultrananocrystalline Diamond[M]. Dordrecht: Springer, 2005: 181-198.
    [59] Morimune-Moriya S, Yada S, Kuroki N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66[J]. Composites Science and Technology,2020,199:108356. doi: 10.1016/j.compscitech.2020.108356
    [60] Ekimov E A, Kondrin M V, Lyapin S G, et al. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes[J]. Diamond and Related Materials,2020,103:107718. doi: 10.1016/j.diamond.2020.107718
    [61] Bedar A, Tewari P K, Bindal R C, et al. Enhancing γ-radiation resistant property of polysulfone membranes with carboxylated nanodiamond: Impact and effect of surface tunability[J]. Applied Surface Science,2020,507:144897. doi: 10.1016/j.apsusc.2019.144897
    [62] Duan X, Ao Z, Li D, et al. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation[J]. Carbon,2016,103:404-411. doi: 10.1016/j.carbon.2016.03.034
    [63] Ganesan K, Ajikumar P K, Ilango S, et al. Si and N - Vacancy color centers in discrete diamond nanoparticles: Raman and fluorescence spectroscopic studies[J]. Diamond and Related Materials,2019,92:150-158. doi: 10.1016/j.diamond.2019.01.002
    [64] Castelletto S, Rosa L, Boretti A. Micro-manipulation of nanodiamonds containing NV centers for quantum applications[J]. Diamond and Related Materials,2020,106:107840. doi: 10.1016/j.diamond.2020.107840
    [65] Mindarava Y, Blinder R, Liu Y, et al. Synthesis and coherent properties of 13C-enriched sub-micron diamond particles with nitrogen vacancy color centers[J]. Carbon,2020,165:395-403. doi: 10.1016/j.carbon.2020.04.071
    [66] Lee G J, Park J J, Lee M K, et al. Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives[J]. Applied Surface Science,2017,415:24-27. doi: 10.1016/j.apsusc.2016.12.109
    [67] Khan M, Hamid A, Tiehu L, et al. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites[J]. Diamond and Related Materials,2020,107:107897. doi: 10.1016/j.diamond.2020.107897
    [68] Wang T, Handschuh-Wang S, Zhang S, et al. Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process[J]. Journal of Colloid and Interface Science,2017,506:543-552. doi: 10.1016/j.jcis.2017.07.035
    [69] Machova I, Hubalek M, Belinova T, et al. The bio-chemically selective interaction of hydrogenated and oxidized ultra-small nanodiamonds with proteins and cells[J]. Carbon,2020,162:650-661. doi: 10.1016/j.carbon.2020.02.061
    [70] Day A H, Adams S J, Gines L, et al. Synthetic routes, characterization and photophysical properties of luminescent, surface functionalized nanodiamonds[J]. Carbon,2019,152:335-343. doi: 10.1016/j.carbon.2019.05.081
    [71] Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents[J]. Journal of Pharmaceutical Analysis,2020,10(1):1-12. doi: 10.1016/j.jpha.2019.09.003
    [72] Mohan N, Chen C S, Hsieh H H, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans[J]. Nano Letters,2010,10(9):3692-3699. doi: 10.1021/nl1021909
    [73] Broz A, Ukraintsev E, Kromka A, et al. Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by live-cell imaging[J]. Journal of Biomedical Materials Research Part A,2017,105(5):1469-1478. doi: 10.1002/jbm.a.35969
    [74] Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics[J]. Materials Science and Engineering: C,2019,97:913-931. doi: 10.1016/j.msec.2018.12.073
    [75] Feng Y, McGuire G E, Shenderova O A, et al. Fabrication of copper/carbon nanotube composite thin films by periodic pulse reverse electroplating using nanodiamond as a dispersing agent[J]. Thin Solid Films,2016,615:116-121. doi: 10.1016/j.tsf.2016.07.015
    [76] Zhang L, Hamers R J. Photocatalytic reduction of CO2 to CO by diamond nanoparticles[J]. Diamond and Related Materials,2017,78:24-30. doi: 10.1016/j.diamond.2017.07.005
    [77] Hong S P, Kim T H, Lee S W. Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern[J]. Carbon,2017,116:640-647. doi: 10.1016/j.carbon.2017.02.040
    [78] Xiao J, Li J, Liu P, et al. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion[J]. Nanoscale,2014,6 24:15098-15106.
    [79] Zuaznabar-Gardona J C, Fragoso A. Electrochemistry of redox probes at thin films of carbon nano-onions produced by thermal annealing of nanodiamonds[J]. Electrochimica Acta,2020,353:136495. doi: 10.1016/j.electacta.2020.136495
    [80] Aggarwal V, Ramesh C, Tyagi P, et al. Controlled epitaxial growth of GaN nanostructures on sapphire (11–20) using laser molecular beam epitaxy for photodetector applications[J]. Materials Science in Semiconductor Processing,2021,125:105631. doi: 10.1016/j.mssp.2020.105631
    [81] Delchevalrie J, Saada S, Bachelet R, et al. Spectroscopic ellipsometry: A sensitive tool to monitor domains formation during the bias enhanced nucleation of heteroepitaxial diamond[J]. Diamond and Related Materials,2021:108246.
    [82] Wang B B, Wang W L, Liao K J. Theoretical analysis of ion bombardment roles in the bias-enhanced nucleation process of CVD diamond[J]. Diamond and Related Materials,2001,10(9):1622-1626.
    [83] Chavanne A, Arnault J C, Barjon J, et al. Bias-enhanced nucleation of diamond on iridium: A comprehensive study of the first stages by sequential surface analysis[J]. Surface Science,2011,605(5-6):564-569. doi: 10.1016/j.susc.2010.12.017
    [84] Verstraete M J, Charlier J C. Why is iridium the best substrate for single crystal diamond growth?[J]. Applied Physics Letters,2005,86(19):191917. doi: 10.1063/1.1922571
    [85] Li D S, Nielsen M H, Lee J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science,2012,336(6084):1014-1018. doi: 10.1126/science.1219643
    [86] Fichthorn K A. Atomic-scale aspects of oriented attachment[J]. Chemical Engineering Science,2015,121:10-5. doi: 10.1016/j.ces.2014.07.016
    [87] Cheng H F, Teng K Y, Chen H C, et al. Bias enhanced nucleation and growth processes for improving the electron field emission properties of diamond films[J]. Surface and Coatings Technology,2013,228:S175-S178. doi: 10.1016/j.surfcoat.2012.06.042
    [88] Lee S T, Peng H Y, Zhou X T, et al. A nucleation site and mechanism leading to epitaxial growth of diamond films[J]. Science,2000,287(5450):104-106. doi: 10.1126/science.287.5450.104
    [89] Schreck M, Hörmann F, Roll H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films[J]. Applied Physics Letters,2001,78(2):192-194. doi: 10.1063/1.1337648
    [90] Zheng Y, Cumont A E L, Bai M, et al. Smoothing of single crystal diamond by high-speed three-dimensional dynamic friction polishing: Optimization and surface bonds evolution mechanism[J]. International Journal of Refractory Metals and Hard Materials,2021:105472.
    [91] Muchnikov A B, Radishev D B, Vikharev A L, et al. Characterization of interfaces in mosaic CVD diamond crystal[J]. Journal of Crystal Growth,2016,442:62-67. doi: 10.1016/j.jcrysgro.2016.02.026
    [92] Findeling-Dufour C, Gicquel A, Chiron R, et al. Growth of large single-crystal diamond layers: Analysis of the junctions between adjacent diamonds[J]. Diamond and Related Materials,1998(7):986-998.
    [93] Bolshakov A P, Ralchenko V G, Shu G, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Materials Today Communications,2020,25:101635. doi: 10.1016/j.mtcomm.2020.101635
    [94] Buntara S K, Pigliacelli C, Gazzera L, et al. Halogen bond-assisted self-assembly of gold nanoparticles in solution and on a planar surface[J]. Nanoscale,2019,11(39):18407-18415. doi: 10.1039/C9NR07054K
    [95] Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters,2013,103(15):151905. doi: 10.1063/1.4824330
    [96] Klein O, Mayr M, Fischer M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films[J]. Diamond and Related Materials,2016,65:53-58. doi: 10.1016/j.diamond.2016.01.024
    [97] Dideikin A T, Eidelman E D, Kidalov S V, et al. Oriented-attachment growth of diamond single crystal from detonation nanodiamonds[J]. Diamond and Related Materials,2017,75:85-90. doi: 10.1016/j.diamond.2017.02.009
    [98] De Yoreo J J, Gilbert P U, Sommerdijk N A, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science,2015,349(6247):6760. doi: 10.1126/science.aaa6760
    [99] Shu G, Dai B, Ralchenko V G, et al. Vertical-substrate epitaxial growth of single-crystal diamond by microwave plasma-assisted chemical vapor deposition[J]. Journal of Crystal Growth,2018,486:104-110. doi: 10.1016/j.jcrysgro.2018.01.024
    [100] Linnik S A, Gaydaychuk A V, Baryshnikov E Y. Deposition of polycrystalline diamond films with a controlled grain size by periodic secondary nucleation[J]. Materials Today: Proceedings,2016,3:S138-S144. doi: 10.1016/j.matpr.2016.02.024
    [101] Chen J, Wang G, Qi C, et al. Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition[J]. Journal of Crystal Growth,2018,484:1-6. doi: 10.1016/j.jcrysgro.2017.12.022
    [102] Aida H, Oshima R, Ouchi T, et al. In-situ reflectance interferometry of heteroepitaxial diamond growth[J]. Diamond and Related Materials,2021:108253.
    [103] Aoyama T, Amano N, Goto T, et al. Characterization of planar-diode bias-treatment in DC-plasma hetero-epitaxial diamond growth on Ir(001)[J]. Diamond and Related Materials,2007,16(3):594-599. doi: 10.1016/j.diamond.2006.11.045
    [104] Liao M, Hishita S, Watanabe E, et al. Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches[J]. Advanced Materials,2010,22(47):5393-5397. doi: 10.1002/adma.201003074
    [105] Wu J, Ye X, Sun L, et al. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica[J]. Optics Express,2018,26(2):1361-1374. doi: 10.1364/OE.26.001361
    [106] Yu Y, Wu L, Zhi J. Diamond nanowires: Fabrication, structure, properties, and applications[J]. Angewandte Chemie-International Edition,2014,53(52):14326-14351. doi: 10.1002/anie.201310803
    [107] Yang N, Uetsuka H, Williams O A, et al. Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing[J]. Physica Status Solidi (a),2009,206(9):2048-2056. doi: 10.1002/pssa.200982222
    [108] Harriers R J. Diamonds are for tethers[J]. Nature,2008,454(7205):708-709. doi: 10.1038/454708a
    [109] Hausmann B J M, Khan M, Zhang Y, et al. Fabrication of diamond nanowires for quantum information processing applications[J]. Diamond and Related Materials,2010,19(5-6):621-629. doi: 10.1016/j.diamond.2010.01.011
    [110] Lee S K, Song M J, Lim D S. Morphology control of 3D-networked boron-doped diamond nanowires and its electrochemical properties[J]. Journal of Electroanalytical Chemistry,2018,820:140-145. doi: 10.1016/j.jelechem.2018.04.056
    [111] Subramanian P, Coffinier Y, Steinmüller-Nethl D, et al. Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels[J]. Electrochimica Acta,2013,110:4-8. doi: 10.1016/j.electacta.2012.11.010
    [112] Gorshkov V N, Tereshchuk V V, Sareh P. Restructuring and breakup of nanowires with the diamond cubic crystal structure into nanoparticles[J]. Materials Today Communications,2020,22:100727. doi: 10.1016/j.mtcomm.2019.100727
    [113] Huang B-R, Saravanan A, Kathiravan D, et al. Role of conductive nitrogen incorporated diamond nanowires for enhancing the UV detection and field emission properties of ZnO nanotubes[J]. Materials & Design,2018,154:130-139.
    [114] Sedov V S, Martyanov A K, Khomich A A, et al. Deposition of diamond films on Si by microwave plasma CVD in varied CH4-H2 mixtures: Reverse nanocrystalline-to-microcrystalline structure transition at very high methane concentrations[J]. Diamond and Related Materials,2020,109:108072. doi: 10.1016/j.diamond.2020.108072
    [115] Zolotukhin A A, Dolganov M A, Alekseev A M, et al. Single-crystal diamond microneedles shaped at growth stage[J]. Diamond and Related Materials,2014,42:15-20. doi: 10.1016/j.diamond.2013.09.003
    [116] Aida H, Kim S W, Ikejiri K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles[J]. Diamond and Related Materials,2017,75:34-38. doi: 10.1016/j.diamond.2016.12.016
    [117] Aida H, Ikejiri K, Kim S W, et al. Overgrowth of diamond layers on diamond microneedles: New concept for freestanding diamond substrate by heteroepitaxy[J]. Diamond and Related Materials,2016,66:77-82. doi: 10.1016/j.diamond.2016.03.019
    [118] Zhou S, Lin Z, Wang H, et al. Nucleation mechanism for epitaxial growth of GaN on patterned sapphire substrates[J]. Journal of Alloys and Compounds,2014,610:498-505. doi: 10.1016/j.jallcom.2014.05.035
    [119] Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond and Related Materials,2017,72:114-118. doi: 10.1016/j.diamond.2017.01.002
    [120] Monteiro O R, Liu H. Nucleation and growth of CVD diamond films on patterned substrates[J]. Diamond and Related Materials,2003,12(8):1357-1361. doi: 10.1016/S0925-9635(03)00106-7
    [121] Yoshikawa T, Kodama H, Kono S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth[J]. Thin Solid Films,2015,594:120-128. doi: 10.1016/j.tsf.2015.10.021
    [122] Liu Z, Fu J, Liu Z, et al. Enhancing diamond NV center density in HPHT substrate and epitaxy lateral overgrowth layer by tungsten pattern[J]. Materials Letters,2019,240:233-237. doi: 10.1016/j.matlet.2018.12.122
    [123] Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir[J]. Diamond and Related Materials,2019,94:92-100. doi: 10.1016/j.diamond.2019.01.027
    [124] Wang Y F, Chang X, Liu Z, et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate[J]. Journal of Crystal Growth,2018,489:51-56. doi: 10.1016/j.jcrysgro.2018.03.003
    [125] Smirnov W, Kriele A, Yang N, et al. Aligned diamond nano-wires: Fabrication and characterisation for advanced applications in bio- and electrochemistry[J]. Diamond and Related Materials,2010,19(2-3):186-189. doi: 10.1016/j.diamond.2009.09.001
    [126] Moore S L, Samudrala G K, Catledge S A, et al. Rapid growth of nanocrystalline diamond on single crystal diamond for studies on materials under extreme conditions[J]. Scientific Reports,2018,8(1):1402. doi: 10.1038/s41598-018-19915-9
    [127] Lobanov S S, Prakapenka V B, Prescher C, et al. Pressure, stress, and strain distribution in the double-stage diamond anvil cell[J]. Journal of Applied Physics,2015,118(3):035905. doi: 10.1063/1.4927213
    [128] Armstrong R, Coulon P M, Bozinakis P, et al. Creation of regular arrays of faceted AlN nanostructures via a combined top-down, bottom-up approach[J]. Journal of Crystal Growth,2020,548:125824. doi: 10.1016/j.jcrysgro.2020.125824
    [129] Sartori A F, Overes B H L, Fanzio P, et al. Template-assisted bottom-up growth of nanocrystalline diamond micropillar arrays[J]. Diamond and Related Materials,2019,95:20-7. doi: 10.1016/j.diamond.2019.03.017
    [130] Janssen W, Faby S, Gheeraert E. Bottom–up fabrication of diamond nanowire arrays[J]. Diamond and Related Materials,2011,20(5):779-81.
    [131] Bai W, Ross C A. Functional nanostructured materials based on self-assembly of block copolymers[J]. MRS Bulletin,2016,41(2):100-7. doi: 10.1557/mrs.2016.1
  • 加载中
图(8)
计量
  • 文章访问数:  2120
  • HTML全文浏览量:  932
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-03-15
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回