留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide

YUAN Ze-zheng CHEN Wei SHI Yun-kai CHU Xiao-dong HUANG Zheng-hong GAN Lin LI Jia HE Yan-bing LI Bao-hua KANG Fei-yu DU Hong-da

袁泽正, 陈威, 时赟凯, 褚晓东, 黄正宏, 干林, 李佳, 贺艳兵, 李宝华, 康飞宇, 杜鸿达. 氧化石墨烯掺杂的电纺聚酰亚胺基石墨纳米纤维的导热性能. 新型炭材料, 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X
引用本文: 袁泽正, 陈威, 时赟凯, 褚晓东, 黄正宏, 干林, 李佳, 贺艳兵, 李宝华, 康飞宇, 杜鸿达. 氧化石墨烯掺杂的电纺聚酰亚胺基石墨纳米纤维的导热性能. 新型炭材料, 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X
YUAN Ze-zheng, CHEN Wei, SHI Yun-kai, CHU Xiao-dong, HUANG Zheng-hong, GAN Lin, LI Jia, HE Yan-bing, LI Bao-hua, KANG Fei-yu, DU Hong-da. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Mater., 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X
Citation: YUAN Ze-zheng, CHEN Wei, SHI Yun-kai, CHU Xiao-dong, HUANG Zheng-hong, GAN Lin, LI Jia, HE Yan-bing, LI Bao-hua, KANG Fei-yu, DU Hong-da. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Mater., 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X

氧化石墨烯掺杂的电纺聚酰亚胺基石墨纳米纤维的导热性能

doi: 10.1016/S1872-5805(21)60077-X
基金项目: 广东珠江人才计划本土创新研究团队项目(2017BT01N111)和广东省重点实验室项目(2020B1212060015)
详细信息
    通讯作者:

    杜鸿达,副研究员. E-mail:duhd@sz.tsinghua.edu.cn

  • 中图分类号: TB33

Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide

Funds: This work was supported by the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111), and Guangdong Key Laboratory Project (2020B1212060015)
More Information
  • 摘要: 本文将氧化石墨烯(GO)分散在N,N-二甲基乙酰胺(DMAc)中,以均苯四甲酸二酐(PMDA)和二氨基二苯醚(ODA)为单体聚合成聚酰亚胺(PI)的前驱体溶液,通过静电纺丝得到平行取向的纳米纤维薄膜,经热亚胺化制得聚酰亚胺纤维。用偏振红外光谱仪测试C = O键在平行和垂直纤维方向的吸收强度,随着GO添加量的增加,平行纤维轴向的方向上吸收强度逐渐增强,至0.1%GO添加量达到最大值。这是由于GO通过提高静电纺丝溶液电导率,提高了PI分子链的取向程度。经炭化和石墨化,PI纤维转化为石墨纤维。石墨纤维的XRD显示(002)面间距随GO含量增加而减少,说明GO的添加提高了石墨化程度。这是因为GO诱导了石墨化过程。石墨纤维的拉曼光谱显示D峰随着GO的添加逐渐减小,表明了石墨微晶的缺陷逐渐减少。这些都是石墨纤维热导率增加的原因。通过稳态T型法测量得到的GO/PI基石墨纤维的热导率中,0.1%GO含量对应于最高的热导率,达到331 W m−1 K−1。本文发现极少量GO(0.1%)就可以显著提高PI基石墨纳米纤维的热导率,该方法具备巨大的应用潜力。
  • FIG. 901.  FIG. 901.

    FIG. 901.. 

    Figure  1.  Preparation process of GO/PI-based graphite nanofibers.

    Figure  2.  Calculating method of orientation factor($ f $).

    Figure  3.  Calculating method of $ {{{I}}_{\rm{D}}}/{{{I}}_{\rm{G}}}$.

    Figure  4.  Mechanism of measuring thermal conductivity using the steady-state T-type method.

    Figure  5.  SEM images of (a) PI graphite nanofibers, (b) 0.05% GO/PI graphite nanofibers, (c) 0.1% GO/PI graphite nanofibers and (d-f) Magnified images of (a–c). TEM images of (g) PI graphite nanofibers, (h) 0.05% GO/PI graphite nanofibers, (i) 0.1% GO/PI graphite nanofibers. Diameters distribution maps of (j) PI graphite nanofibers, (k) 0.05% GO/PI graphite nanofibers and (l) 0.1% GO/PI graphite nanofibers.

    Figure  6.  (a) Polarized FT-IR spectra of the GO/PI composite nanofibers. (b) Orientation factor of GO/PI with different GO contents and (c) Conductivity of GO/PAA solution with different GO mass contents.

    Figure  7.  (a) XRD spectra of the GO/PI graphite nanofiber. (b) Degree of graphitization and average size of crystallite with different GO contents. (c) Raman spectra of the graphite nanofiber and (d) ID/IG with different GO contents.

    Figure  8.  (a) Thermal conductivity under different temperatures. (b) average thermal conductivity and (c) electrical resistivity of GO/PI graphite nanofibers with different GO mass contents.

    Table  1.   Parameters of the electrospinning.

    ParametersValues
    Conc. PAA (wt%)15
    Voltage(kV) and distance(cm)20/20
    Nozzle diameter(mm)0.4
    Injection speed(mm/min)0.02
    Directional collector speed(r/min)2800
    下载: 导出CSV

    Table  2.   The graphitization degree and average size of the crystallite of GO/PI graphite nanofibers with different GO mass contents.

    GO content2θ(°)FWHMd002(nm)
    026.330.6960.3383
    0.01%26.410.6730.3372
    0.03%26.450.5680.3368
    0.05%26.520.3790.3360
    0.1%26.540.2760.3357
    下载: 导出CSV
  • [1] Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [2] Ding Y, Hou H, Zhao Y, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science,2016,61:67-103. doi: 10.1016/j.progpolymsci.2016.06.006
    [3] Jiang S, Uch B, Agarwal S, et al. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges[J]. ACS applied materials & interfaces,2017,9(37):32308-32315.
    [4] Yang W, Liu F, Zhang J, et al. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber[J]. European Polymer Journal,2017,96:429-442. doi: 10.1016/j.eurpolymj.2017.09.015
    [5] Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon,2013,61:1-21. doi: 10.1016/j.carbon.2013.05.035
    [6] Li A, Ma Z, Song H, et al. The effect of liquid stabilization on the structures and the conductive properties of polyimide-based graphite fibers[J]. RSC advances,2015,5(97):79565-79571. doi: 10.1039/C5RA10497A
    [7] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. Industry Applications Society Annual Meeting, 1993[C]. Conference Record of the 1993 IEEE: IEEE. 1993: 1698-1703.
    [8] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology,1996,7(3):216. doi: 10.1088/0957-4484/7/3/009
    [9] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied physics,2000,87(9):4531-4547. doi: 10.1063/1.373532
    [10] Richard-Lacroix M, Pellerin C. Molecular orientation in electrospun fibers: from mats to single fibersibers[J]. Macromolecules,2013,46(24):9473-9493. doi: 10.1021/ma401681m
    [11] Xiao M, Li N, Ma Z, et al. The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre[J]. RSC advances,2017,7(89):56602-56610. doi: 10.1039/C7RA10307G
    [12] Song Z, Chiang S W, Chu X, et al. Effects of solvent on structures and properties of electrospun poly (ethylene oxide) nanofibers[J]. Journal of Applied Polymer Science,2018,135(5):45787. doi: 10.1002/app.45787
    [13] Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer,2017,115:52-59. doi: 10.1016/j.polymer.2017.02.024
    [14] Bai H, Tian X, Zheng Y, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Advanced materials,2010,22(48):5521-5525. doi: 10.1002/adma.201003169
    [15] Zhang L B, Wang J Q, Wang H G, et al. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1537-1545. doi: 10.1016/j.compositesa.2012.03.026
    [16] Jiang S, Duan G, Chen L, et al. Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature[J]. Materials Letters,2015,140:12-15. doi: 10.1016/j.matlet.2014.11.003
    [17] Tashiro K, Kobayashi M. FTIR study on molecular orientation and ferroelectric phase transition in vacuum-evaporated and solution-cast thin films of vinylidene fluoride-trifluoroethylene copolymers: Effects of heat treatment and high-voltage poling[J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1994,50(8-9):1573-1588. doi: 10.1016/0584-8539(94)E0068-L
    [18] Jiang S, Han D, Huang C, et al. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber[J]. Materials Letters,2018,216:81-83. doi: 10.1016/j.matlet.2017.12.146
    [19] Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980. doi: 10.1023/A:1006674510648
    [20] Yang H, Jiang S, Fang H, et al. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,200:339-344. doi: 10.1016/j.saa.2018.04.045
    [21] Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical review letters,2005,95(6):065502. doi: 10.1103/PhysRevLett.95.065502
    [22] Lee K H, Kim K W, Pesapane A, et al. Polarized FT-IR study of macroscopically oriented electrospun nylon-6 nanofibers[J]. Macromolecules,2008,41(4):1494-1498. doi: 10.1021/ma701927w
    [23] Fraser R D B. Determination of transition moment orientation in partially oriented polymers[J]. The Journal of Chemical Physics,1958,29(6):1428-1429. doi: 10.1063/1.1744747
    [24] Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,2004,362(1824):2271-2288. doi: 10.1098/rsta.2004.1454
    [25] Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1951,209(1097):196-218.
    [26] Yang K S, Edie D D, Lim D Y, et al. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly (amic acid) solution[J]. Carbon,2003,41(11):2039-2046. doi: 10.1016/S0008-6223(03)00174-X
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  362
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-04-29
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回