留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of graphene-based films for heat dissipation

LI Hao-liang XIAO Shu-ning YU Hong-liu XUE Yu-hua YANG Jun-he

李昊亮, 肖舒宁, 喻洪流, 薛裕华, 杨俊和. 石墨烯散热薄膜研究进展. 新型炭材料, 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6
引用本文: 李昊亮, 肖舒宁, 喻洪流, 薛裕华, 杨俊和. 石墨烯散热薄膜研究进展. 新型炭材料, 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6
LI Hao-liang, XIAO Shu-ning, YU Hong-liu, XUE Yu-hua, YANG Jun-he. A review of graphene-based films for heat dissipation. New Carbon Mater., 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6
Citation: LI Hao-liang, XIAO Shu-ning, YU Hong-liu, XUE Yu-hua, YANG Jun-he. A review of graphene-based films for heat dissipation. New Carbon Mater., 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6

石墨烯散热薄膜研究进展

doi: 10.1016/S1872-5805(21)60092-6
基金项目: 上海市青年科技英才扬帆计划资助(20YF1432100,20YF1432200),上海市教委创新项目(2019-01-07-00-E00015)以及上海市科技创新项目(19JC1410402)
详细信息
    通讯作者:

    杨俊和,教授. E-mail:yjh@gench.edu.cn

  • 中图分类号: TQ1271+1

A review of graphene-based films for heat dissipation

More Information
  • 摘要: 由于石墨烯具有优异的导热与导电性能,已被认为是最理想的散热材料之一,受到学术界与产业界的广泛关注。在本综述中,我们总结了石墨烯薄膜在热管理领域的研究现状,介绍了还原氧化石墨烯薄膜,机械剥离石墨烯薄膜以及石墨烯基复合薄膜的制备及其应用性能。进一步地,对石墨烯薄膜在导热、导电应用过程中的关键因素进行分析,总结石墨烯薄膜在散热领域未来实现产业化应用所面临的挑战。
  • FIG. 924.  FIG. 924.

    FIG. 924.. 

    Figure  1.  Illustration of thermal conductivities of various carbon materials[2]. (Reprinted with permission).

    Figure  2.  (a) Schematic illustration of the electrospinning method. (b, c) The SEM images of as-obtained GO and rGO films. (d, e) The Infar-red photos for heat dissipation performance[24] (Copyright 2014, John Wiley and Sons). (f) The preparation procedure of self-fused rGO films. (g, h) The SEM images of rGO films with different thickness. (i) Mechanism diagram of the self-fusion process. (j, k) The thermal and electrical conductivities of rGO films with different layers or thicknesses[32] (Copyright 2020, Elsevier).

    Figure  3.  (a) The preparation of graphene films by ball-milling and vacuum filtration methods. (b, c) The surface and cross-section morphology of graphene film. (d, e) The thermal conductivity and heat dissipation performance of graphene films[40] (Copyright 2017, John Wiley and Sons). (f) The illustration of centrifugal dip coating of graphene film and the optical photograph. (g-i) SEM images of the as-obtained graphene film. (j-l) The thermal, electrical conductivity and the EMI shielding performance of graphene film[43] (Copyright 2020, John Wiley and Sons).

    Figure  4.  (a) The bar coating preparation of rGO/CNT composite film. (b, c) SEM and TEM morphology of the composite film. (d) The illustration of CNTs as thermal pathway to connect the graphene sheets. (e, f) Thermal and EMI shielding performance of the composite film[27](Copyright 2018, Elsevier). (g) The illustration of spraying coating of GO on CNT yarns. (h, i) SEM and TEM images of the rGO/CNT composite film. (j) The demonstration of rGO/CNT to improve the heat transfer performance. (k) The thermal conductivity of the composite films with different GO loadings. (l) The infra-red photos of the composite film compared with copper sheet[26]. (Copyright 2017, Elsevier).

    Figure  5.  (a) The casting process of a GO solution on PI pulp. (b-d) The optical photos and SEM morphology of PI pulp and the graphitized GO/PI composite film. (e) The heat dissipation performance of GO/PI film compared with Cu foil[47] (Copyright 2020, John Wiley and Sons). (f) The illustration of GO connected by g-C3N4. (g, h) The surface and cross-section morphology of rGO/C3N4 composite film. (i-k) The thermal conductivity and the heat dissipation performance on CPU of the rGO/ C3N4 film[15] (Copyright 2021, American Chemical Society).

    Figure  6.  The illustration of modified molecular welding strategy of rGO/PI composite films[46, 51] (Copyright 2019, Royal Society of Chemistry and Copyright 2019, John Wiley and Sons).

    Figure  7.  The illustration of defects and lattice mismatch in graphene sheets to summarize the key factors to heat dissipation of graphene films[58] (Copyright 2012, Material Research Society).

    Figure  8.  (a) Schematic diagram of the structural defects in graphene, (b) The thermal conductivities of graphene ribbon with different defect ratios. (c) The relationship between normalized thermal conductivity and the mean free path. (d) The relaxation time of different types of phonons[59] (Copyright 2017, Elsevier).

    Figure  9.  (a) The diagram of the grain domain of graphene by the CVD method. (b and c) The SEM and the digital treated images of grain domain grown at different temperatures and gas pressures. (d) The thermal conductivity of graphene film with different grain sizes[71] (Copyright 2017, Elsevier).

    Figure  10.  (a, b) The SEM images of centrifugal collected L-GO and S-GO. (c) The digital photos of L-GO and rL-GO films. (d and e) The thermal and EMI shielding performance of rL-GO and rS-GO films[73] (Copyright 2015, Elsevier). (f) The illustration of the formation of micro-folds achieved by debris-free GO sheets. (g-h) The cross-sectional and the surface morphologies of the DfrGO film. (j) The optical images of DfrGO film with excellent flexibility. (k and l) The heat dissipation performance and the thermal conductivity of DfrGO film[25] (Copyright 2017, John Wiley and Sons).

    Figure  11.  (a) The demonstration of GO film prepared by a centrifugal casting method, (b) The optical photo of the meter-scale free-standing GO film, (c) The optical photo and the SEM image of the reduced GO film[57].

    Table  1.   The state-of-art preparation of graphene-based films for thermal management.

    MaterialsAssembly methodTemperature (°C)TC (κ, W(m k)−1)EC (σ, S cm−1)Refs.
    rGOVacuum filtration12001043Not Available (NA)[53]
    rGOSelf-assembly200011001000[30]
    rGOElectro spray285012381570[24]
    Multilayer grapheneVacuum filtration450NA1443[54]
    rGO fiberWet-spun28501290 (axial)NA[11]
    rGOCast dryingWithout annealing548NA[9]
    Graphene paperVacuum filtration28001324NA[41]
    rGOBlade coatingWithout annealing734NA[10]
    Debris-free rGOCast drying28501940NA[25]
    Graphene paperVacuum filtration28001529NA[40]
    rGOCast drying28503200NA[31]
    rGOBar coating2800826NA[28]
    Stacked CVD graphene filmCVD28002292220[55]
    rGO3D printing2727118.71481[56]
    rGOCentrifugal casting120NA650[57]
    Graphene filmScanning centrifugal castingWithout annealing1901400[43]
    Thick rGO filmSelf-fusion280012246910[32]
    Graphene laminates filmVacuum filtration6009755267[42]
    下载: 导出CSV
  • [1] Alipanah M, Moghaddam S. Ultra-low pressure drop membrane-based heat sink with 1000 W/cm2 cooling capacity and 100% exit vapor quality[J]. International Journal of Heat and Mass Transfer,2020,161:120312. doi: 10.1016/j.ijheatmasstransfer.2020.120312
    [2] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [4] Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. doi: 10.1021/nl052145f
    [5] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. doi: 10.1103/PhysRevLett.87.215502
    [6] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [7] Liu Z, Li Z, Xu Z, et al. Wet-spun continuous graphene films[J]. Chemistry of Materials,2014,26(23):6786-6795. doi: 10.1021/cm5033089
    [8] Zhang M, Huang L, Chen J, et al. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes[J]. Advanced Materials,2014,26(45):7588-7592. doi: 10.1002/adma.201403322
    [9] Zhang M, Wang Y, Huang L, et al. Multifunctional pristine chemically modified graphene films as strong as stainless steel[J]. Advanced Materials,2015,27:6708-6713. doi: 10.1002/adma.201503045
    [10] Guo Y, Dun C, Xu J, et al. Ultrathin, washable, and large-area graphene papers for personal thermal management[J]. Small,2017,13(44
    [11] Xin G, Yao T, Sun H, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science,2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
    [12] Wang R, Xu Z, Zhuang J, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters[J]. Advanced Electronic Materials,2017,3(2):1600425. doi: 10.1002/aelm.201600425
    [13] Zhang L B, Wang J Q, Wang H G, et al. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1537-1545. doi: 10.1016/j.compositesa.2012.03.026
    [14] Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials,2014,24(27):4222-4228. doi: 10.1002/adfm.201304144
    [15] Wang Y, Zhang X, Ding X, et al. Stitching graphene sheets with graphitic carbon nitride: Constructing a highly thermally conductive rGO/g-C3N4 film with excellent heating capability[J]. ACS Applied Materials & Interfaces,2021,13(5):6699-6709.
    [16] Kim C, An S, Lee J, et al. Engineering graphene oxide laminate membranes for enhanced flux and boron treatment with polyethylenimine (PEI) polymers[J]. ACS Applied Materials & Interfaces,2019,11(1):924-929.
    [17] Malekpour H, Chang K H, Chen J C, et al. Thermal conductivity of graphene laminate[J]. Nano Letters,2014,14(9):5155-5161. doi: 10.1021/nl501996v
    [18] Nika D, Ghosh S, Pokatilov E, et al. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite[J]. Applied Physics Letters,2009,94(20):203103. doi: 10.1063/1.3136860
    [19] Shahil K M, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [20] Gao Z, Zhang Y, Fu Y, et al. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots[J]. Carbon,2013,61:342-348. doi: 10.1016/j.carbon.2013.05.014
    [21] Wu T, Zhang X, Yuan Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys[J]. Nature Materials,2016,15(1):43. doi: 10.1038/nmat4477
    [22] Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply[J]. Nature Nanotechnology,2016,11(11):930. doi: 10.1038/nnano.2016.132
    [23] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457. doi: 10.1038/nature06016
    [24] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [25] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [26] Hu D, Gong W, Di J, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity[J]. Carbon,2017,118:659-665. doi: 10.1016/j.carbon.2017.04.005
    [27] Zhou E, Xi J, Guo Y, et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films[J]. Carbon,2018,133:316-322. doi: 10.1016/j.carbon.2018.03.023
    [28] Huang Y, Gong Q, Zhang Q, et al. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures[J]. Nanoscale,2017,9(6):2340-2347. doi: 10.1039/C6NR06653D
    [29] Fu Y, Hansson J, Liu Y, et al. Graphene related materials for thermal management[J]. 2D Materials,2019,7(1):012001. doi: 10.1088/2053-1583/ab48d9
    [30] Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [31] Wang N, Samani M K, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small,2018:e1801346.
    [32] Zhang X, Guo Y, Liu Y, et al. Ultrathick and highly thermally conductive graphene films by self-fusion[J]. Carbon,2020,167:249-255. doi: 10.1016/j.carbon.2020.05.051
    [33] Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon,2020,167:270-277. doi: 10.1016/j.carbon.2020.06.030
    [34] Liu Y, Li P, Wang F, et al. Rapid roll-to-roll production of graphene films using intensive Joule heating[J]. Carbon,2019,155:462-468. doi: 10.1016/j.carbon.2019.09.021
    [35] Jeon I Y, Bae S Y, Seo J M, et al. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling[J]. Advanced Functional Materials,2015,25(45):6961-6975. doi: 10.1002/adfm.201502214
    [36] Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials,2014,13(6):624. doi: 10.1038/nmat3944
    [37] Xia Z Y, Pezzini S, Treossi E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: A nanoscale study[J]. Advanced Functional Materials,2013,23:4684-4693.
    [38] Rangappa D, Sone K, Wang M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry-A European Journal,2010,16(22):6488-6494. doi: 10.1002/chem.201000199
    [39] Moon J Y, Kim M, Kim S I, et al. Layer-engineered large-area exfoliation of graphene[J]. Science Advances,2020,6(44):eabc6601. doi: 10.1126/sciadv.abc6601
    [40] Teng C, Xie D, Wang J, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [41] Ding J, Zhao H, Wang Q, et al. An ultrahigh thermal conductive graphene flexible paper[J]. Nanoscale,2017,9(43):16871-16878. doi: 10.1039/C7NR06667H
    [42] Wu T, Xu Y, Wang H, et al. Efficient and inexpensive preparation of graphene laminated film with ultrahigh thermal conductivity[J]. Carbon,2021,171:639-645. doi: 10.1016/j.carbon.2020.09.039
    [43] Wei Q, Pei S, Qian X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film[J]. Advanced Materials,2020,32(14):e1907411. doi: 10.1002/adma.201907411
    [44] Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences,2012,109(15):5588-5593. doi: 10.1073/pnas.1116897109
    [45] Hsieh C T, Lee C E, Chen Y F, et al. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets[J]. Nanoscale,2015,7(44):18663-18670. doi: 10.1039/C5NR04993H
    [46] Li H, Miao J, Wu X, et al. In-Situ “molecular welding” preparation of graphene/polyimide hybrid film with superior thermal conductivity and flexibility[J]. Journal of Polymer Science Part B: Polymer Physics,2018,56(17):1215-1223. doi: 10.1002/polb.24640
    [47] Li Y, Zhu Y, Jiang G, et al. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through-plane conductivity of 3D hybridized structure[J]. Small,2020,16(8):1903315. doi: 10.1002/smll.201903315
    [48] Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials,2015,25(28):4430-4435. doi: 10.1002/adfm.201500990
    [49] Li H, Dai S, Miao J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy[J]. Carbon,2018,126:319-327. doi: 10.1016/j.carbon.2017.10.044
    [50] Miao J, Li H, Qiu H, et al. Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization[J]. Journal of Materials Science,2018:1-11.
    [51] Wu X, Li H, Cheng K, et al. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity[J]. Nanoscale,2019,11(17):8219-8225. doi: 10.1039/C9NR02117E
    [52] Wang K, Li M, Zhang J, et al. Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability[J]. Carbon,2019,144:249-258. doi: 10.1016/j.carbon.2018.12.027
    [53] Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [54] Paliotta L, De Bellis G, Tamburrano A, et al. Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield[J]. Carbon,2015,89:260-271. doi: 10.1016/j.carbon.2015.03.043
    [55] Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31(29):e1903039. doi: 10.1002/adma.201903039
    [56] Zeng Y, Li T, Yao Y, et al. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors[J]. Advanced Functional Materials,2019:1901388. doi: 10.1002/adfm.201901388
    [57] Zhong J, Sun W, Wei Q, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances[J]. Nature Communications,2018,9(1):3484. doi: 10.1038/s41467-018-05723-2
    [58] Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin,2012,37(12):1273-1281. doi: 10.1557/mrs.2012.203
    [59] Hu S, Chen J, Yang N, et al. Thermal transport in graphene with defect and doping: Phonon modes analysis[J]. Carbon,2017,116:139-144. doi: 10.1016/j.carbon.2017.01.089
    [60] Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials,2012,11(3):203-207. doi: 10.1038/nmat3207
    [61] Kim T Y, Park C H, Marzari N. The electronic thermal conductivity of graphene[J]. Nano Letters,2016,16(4):2439-2443. doi: 10.1021/acs.nanolett.5b05288
    [62] Xie Z X, Zhang Y, Zhang L F, et al. Effect of topological line defects on electron-derived thermal transport in zigzag graphene nanoribbons[J]. Carbon,2017,113:292-298. doi: 10.1016/j.carbon.2016.11.065
    [63] Islam M S, Tanaka S, Hashimoto A. Effect of vacancy defects on phonon properties of hydrogen passivated graphene nanoribbons[J]. Carbon,2014,80:146-154. doi: 10.1016/j.carbon.2014.08.049
    [64] Tan S H, Tang L M, Xie Z X, et al. Effect of pentagon–heptagon defect on thermal transport properties in graphene nanoribbons[J]. Carbon,2013,65:181-186. doi: 10.1016/j.carbon.2013.08.012
    [65] Li M, Deng T, Zheng B, et al. Effect of defects on the mechanical and thermal properties of graphene[J]. Nanomaterials (Basel),2019,9(3
    [66] Thomas J A, Iutzi R M, McGaughey A J H. Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes[J]. Physical Review B,2010,81(4):045413. doi: 10.1103/PhysRevB.81.045413
    [67] Qiu L, Zhang X, Guo Z, et al. Interfacial heat transport in nano-carbon assemblies[J]. Carbon,2021,178:391-412. doi: 10.1016/j.carbon.2021.02.105
    [68] Nika D L, Askerov A S, Balandin A A. Anomalous size dependence of the thermal conductivity of graphene ribbons[J]. Nano Letters,2012,12(6):3238-3244. doi: 10.1021/nl301230g
    [69] Xu X, Pereira L F, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications,2014,5:3689. doi: 10.1038/ncomms4689
    [70] Park M, Lee S C, Kim Y S. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit[J]. Journal of Applied Physics,2013,114(5):053506. doi: 10.1063/1.4817175
    [71] Lee W, Kihm K D, Kim H G, et al. In-plane thermal conductivity of polycrystalline chemical vapor deposition graphene with controlled grain sizes[J]. Nano Letters,2017,17(4):2361-2366. doi: 10.1021/acs.nanolett.6b05269
    [72] Ma T, Liu Z, Wen J, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering[J]. Nature Communications,2017,8:14486. doi: 10.1038/ncomms14486
    [73] Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon,2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032
    [74] Cao H Y, Guo Z X, Xiang H, et al. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons[J]. Physics Letters A,2012,376(4):525-528. doi: 10.1016/j.physleta.2011.11.016
    [75] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science,2010,328(5975):213-216. doi: 10.1126/science.1184014
    [76] Guo Z X, Zhang D, Gong X G. Manipulating thermal conductivity through substrate coupling[J]. Physical Review B,2011,84(7):075470. doi: 10.1103/PhysRevB.84.075470
    [77] Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [78] Shen T Z, Hong S H, Song J K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient[J]. Nature materials,2014,13(4):394. doi: 10.1038/nmat3888
    [79] Zhai P, Wang Y, Liu C, et al. Electric-field-tunable conductivity in graphene/water and graphene/ice systems[J]. Small,2017,13(39):1701149. doi: 10.1002/smll.201701149
    [80] Song N J, Lu C X, Chen C M, et al. Effect of annealing temperature on the mechanical properties of flexible graphene films[J]. New Carbon Materials,2017,32(3):221-226. doi: 10.1016/S1872-5805(17)60119-7
    [81] Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film[J]. Carbon,2012,50(2):659-667. doi: 10.1016/j.carbon.2011.09.022
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2130
  • HTML全文浏览量:  1217
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-09-03
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回