留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new strategy for the efficient exfoliation of graphite into graphene

CHAI Lin CUI Xiao-jing QI Yong-qin TENG Na HOU Xiang-lin DENG Tian-sheng

柴琳, 崔晓静, 齐永琴, 滕娜, 侯相林, 邓天昇. 一种石墨高效剥离成石墨烯的新策略. 新型炭材料, 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2
引用本文: 柴琳, 崔晓静, 齐永琴, 滕娜, 侯相林, 邓天昇. 一种石墨高效剥离成石墨烯的新策略. 新型炭材料, 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2
CHAI Lin, CUI Xiao-jing, QI Yong-qin, TENG Na, HOU Xiang-lin, DENG Tian-sheng. A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Mater., 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2
Citation: CHAI Lin, CUI Xiao-jing, QI Yong-qin, TENG Na, HOU Xiang-lin, DENG Tian-sheng. A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Mater., 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2

一种石墨高效剥离成石墨烯的新策略

doi: 10.1016/S1872-5805(21)60100-2
基金项目: 国家自然科学基金-山西省煤基低碳联盟基金资助项目(U1710252);山西省科委应用基础研究计划项目(201901D111006/ZD)
详细信息
    通讯作者:

    滕 娜,高级工程师. E-mail:tengna@sxicc.ac.cn

    侯相林,研究员. E-mail:houxl@sxicc.ac.cn

    邓天昇,研究员. E-mail:dts117@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

A new strategy for the efficient exfoliation of graphite into graphene

More Information
  • 摘要: 超声剥离法被认为是由石墨制备石墨烯最方便、最清洁的方法,但在溶剂中大量处理石墨时,其产率较低,且超声剥离后的石墨难以进一步再被剥离为石墨烯,造成大量的资源浪费。因此本文提出了一种超声与研磨相结合的高效剥离石墨制石墨烯的新策略。结果表明,超声剥离后不能再被剥离的石墨经超声和研磨处理后,可进一步剥离为石墨烯,石墨烯收率可达4.73%。产生这种现象的原因可能是由于石墨层的规则堆叠被破坏,且产生了卷曲的石墨边缘,这些均为溶剂进入石墨层间克服作用力提供了“楔入点”。获得的石墨烯片层均小于10层。该工作为石墨大规模高效剥离制少缺陷石墨烯提供了一种新策略。
  • FIG. 1085.  FIG. 1085.

    FIG. 1085.. 

    1.  Grinding process for further exfoliation of graphite into graphene.

    Figure  1.  TEM and AFM images of graphene exfoliated from graphite by direct ultrasonication. (a-e) TEM images of graphene flakes, (f) AFM images of graphene flakes, (g) thickness of graphene flakes. Experimental conditions: graphite, 0.5 g; NMP, 50 mL; ultrasonication time, 30 min.

    Figure  2.  (a) Influence of sonication time on graphene yields. (b) Corresponding images of graphene with different ultrasonication times. Experimental conditions: graphite, 0.5 g; NMP, 50 mL; ultrasonication time was 15, 30, 45, 60 min, respectively.

    Figure  3.  SEM images of (a, b) pristine graphite, (c, d) exfoliated graphite after ultrasonication for 30 min, (e, f) grinded exfoliated graphite (sample (c, d)) for 1 h. Experimental conditions: graphite, 0.5 g; NMP for ultrasonication, 50 mL; NMP for grinding, 5 mL; ultrasonication time, 30 min; grinding, 1 h; centrifugation at 600 r/min for 90 min.

    Figure  4.  XRD patterns of graphene and graphite with different treatment. (a) pristine graphite, (b) sample treated with ultrasonication and exfoliation by pristine graphite, (c) sample treated with ultrasonication, exfoliation and grind by pristine, (d) sample treated with ultrasonication, exfoliation, grind, ultrasonication, and exfoliation by pristine graphite, (e) sample treated with ultrasonication and extraction filtration by pristine graphite, (f) sample treated with ultrasonication, exfoliation, grind, ultrasonication and extraction filtration by pristine graphite. Experimental conditions: graphite, 0.5 g; NMP for ultrasonication, 50 mL; NMP for grinding, 5 mL; ultrasonication time, 30 min; grinding, 1 h; centrifugation at 600 r/min for 90 min.

    Figure  5.  Yields of graphene with different sizes of graphite as starting materials by ultrasonication treatment. Experimental conditions: graphite, 0.5 g; NMP for ultrasonication, 50 mL; ultrasonication time, 30 min; centrifugation at 600 r/min for 90 min.

    Table  1.   Effect of ultrasonication time and the grinding treatment on the yield of graphene*

    EntryExperimental detailsYield (%)Photo
    11st ultrasonication
    from pristine graphite
    1.68
    22nd ultrasonication1.53
    33rd ultrasonication0.66
    44th ultrasonication0.56
    55th ultrasonication0.59
    6Grinding followed by
    ultrasonication treatment
    of pristine graphite.
    3.42
    7Grinding followed by
    ultrasonication treatment
    of exfoliated graphite after the 1st ultrasonication.
    3.58
    8Grinding followed by
    ultrasonication treatment
    of exfoliated graphite
    after the 5th ultrasonication.
    4.73
    Note: *Experimental conditions: pristine graphite (0.5 g) in NMP (50 mL) was treated by the 1st ultrasonication (30 min), after ultrasonication, the mixture was sent to centrifuge at 600 r/min for 90 min to obtained the graphene suspension, and the residual exfoliated graphite was directly resent to the next time of ultrasonication or grinding for 1 h. The volume of NMP for grinding treatment was 5 mL. The 2nd, 3rd, 4th and 5th ultrasonication were treated as the same centrifugation and ultrasonication conditions.
    下载: 导出CSV

    Table  2.   Characteristics of graphene and graphite with different treatments*

    SamplesFWHMi2θiid/nmiiiD/nmiv
    a0.1226.60.341.72
    b0.1526.50.351.72
    c0.1426.60.351.38
    d0.1026.50.352.30
    e0.1426.50.351.38
    f0.1226.50.351.72
    Note: (a) pristine graphite, (b) sample treated with ultrasonication and exfoliation by pristine graphite, (c) sample treated with ultrasonication, exfoliation and grind by pristine, (d) sample treated with ultrasonication, exfoliation, grind, ultrasonication, and exfoliation by pristine graphite,
    (e) sample treated with ultrasonication and extraction filtration by pristine graphite, (f) sample treated with ultrasonication, exfoliation, grind, ultrasonication and extraction filtration by pristine graphite.
    Experimental conditions: graphite, 0.5 g; NMP for ultrasonication, 50 mL; NMP for grinding, 5 mL; ultrasonication time, 30 min; grinding, 1 h; centrifugation at 600 r/min for 90 min.
    i FWHM: full width at a half maximum according to the peaks in Fig. 4; ii 2θ: typical diffraction angle; iii d: the d-spacing between the graphite layers; iv D: the vertical distance along the plane of (002) for each sample.
    下载: 导出CSV
  • [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2] Novoselov K S, Geim A K. The rise of graphene-nature materials[J]. Nature Materials,2004,6:183-191.
    [3] Taisuke O A B, Thomas S, Karsten H, et al. Controlling the electronic structure of bilayer graphene[J]. Science,2006,313(5789):951-954. doi: 10.1126/science.1130681
    [4] Castro N A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics,2009,81(1):109-162. doi: 10.1103/RevModPhys.81.109
    [5] Chen J F, Duan M, Chen G H. Continuous mechanical exfoliation of graphene sheets via three-roll mill[J]. Journal of Materials Chemistry,2012,22(37):19625. doi: 10.1039/c2jm33740a
    [6] Huang Y, Pan Y H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nat Commun,2020,11(1):2453. doi: 10.1038/s41467-020-16266-w
    [7] Hernandez Y, Nicolosi V, Loytya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol,2008,3(9):563-8. doi: 10.1038/nnano.2008.215
    [8] Choucair M, Thordarson P, Stride J. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol,2009,4(1):30-3. doi: 10.1038/nnano.2008.365
    [9] Khan U, O'neill A, Loytya M, et al. High-concentration solvent exfoliation of graphene[J]. Small,2010,6(7):864-71. doi: 10.1002/smll.200902066
    [10] Qian W, Hao R, Hou Y L, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality[J]. Nano Research,2009,2(9):706-712. doi: 10.1007/s12274-009-9074-z
    [11] Wang J Z, Manga K K, Bao Q L, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. J Am Chem Soc,2011,133(23):8888-91. doi: 10.1021/ja203725d
    [12] Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS nano,2009,3(8):2367-2375. doi: 10.1021/nn900546b
    [13] Wang H L, Robinson T J, Li X L, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. J. Am. Chem. Soc.,2009,131:9910-9911. doi: 10.1021/ja904251p
    [14] Sun Z Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature,2010,468(7323):549-52. doi: 10.1038/nature09579
    [15] Yuan G W, Lin D J, Wang Y, et al. Proton-assisted growth of ultra-flat graphene films[J]. Nature,2020,577(7789):204-208. doi: 10.1038/s41586-019-1870-3
    [16] Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics[J]. Chem Rev,2007,107:718-747. doi: 10.1021/cr068010r
    [17] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5(8):574-8. doi: 10.1038/nnano.2010.132
    [18] Wei G. The chemistry of graphene oxide [M], 2015.
    [19] Chen D, Feng H B, Li J H. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chem Rev,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [20] Gao W, Alemany L, Ci L J, et al. New insights into the structure and reduction of graphite oxide[J]. Nat Chem,2009,1(5):403-8. doi: 10.1038/nchem.281
    [21] Skaltsas T, Ke X X, Bittencourt C, et al. Ultrasonication induces oxygenated species and defects onto exfoliated graphene[J]. The Journal of Physical Chemistry C,2013,117(44):23272-23278. doi: 10.1021/jp4057048
    [22] Xia Z Y, Pezzini S, Treossi E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study[J]. Advanced Functional Materials,2013,23:4684-4693.
    [23] Zhao W F, Fang M, Wu F R, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry,2010,20(28):5817. doi: 10.1039/c0jm01354d
    [24] Liu W, Tanna V, Yavitt B M, et al. Fast production of high-quality graphene via sequential liquid exfoliation[J]. ACS Appl Mater Interfaces,2015,7(49):27027-30. doi: 10.1021/acsami.5b08494
    [25] Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science,2008,319(5867):1229-1232. doi: 10.1126/science.1150878
    [26] Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat Mater,2014,13(6):624-30. doi: 10.1038/nmat3944
    [27] Scherrer V P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Gö ttingen, Mathematisch-Physikalische Klasse,1916,1918:98-100.
    [28] Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors[J]. Adv Mater,2011,23(25):2833-8. doi: 10.1002/adma.201100261
    [29] Chen H Q, Muller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials,2008,20(18):3557-3561. doi: 10.1002/adma.200800757
  • 20210215-支撑材料.pdf
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  391
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-24
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回