留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors

ZHANG Ming-hui XU Wen WU Li-sha DONG Yan-feng

张明慧, 徐文, 武丽莎, 董琰峰. MXene基纳米材料在高性能水系锌离子混合电容器中的研究进展. 新型炭材料(中英文), 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5
引用本文: 张明慧, 徐文, 武丽莎, 董琰峰. MXene基纳米材料在高性能水系锌离子混合电容器中的研究进展. 新型炭材料(中英文), 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5
ZHANG Ming-hui, XU Wen, WU Li-sha, DONG Yan-feng. Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors. New Carbon Mater., 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5
Citation: ZHANG Ming-hui, XU Wen, WU Li-sha, DONG Yan-feng. Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors. New Carbon Mater., 2022, 37(3): 508-526. doi: 10.1016/S1872-5805(22)60611-5

MXene基纳米材料在高性能水系锌离子混合电容器中的研究进展

doi: 10.1016/S1872-5805(22)60611-5
基金项目: 辽宁省“兴辽英才计划”青年拔尖人才(XLYC2007129); 辽宁省自然科学基金(2020-MS-095);中央高校基本科研业务费(N2105008);中国科学院炭材料重点实验室开放课题(KLCMKFJJ2004)
详细信息
    通讯作者:

    董琰峰,副教授. E-mail:dongyanfeng@mail.neu.edu.cn

  • 中图分类号: TB33

Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors

Funds: This work was financially supported by LiaoNing Revitalization Talents Program (XLYC2007129), the Natural Science Foundation of Liaoning Province (2020-MS-095), the Fundamental Research Funds for the Central Universities of China (N2105008), and the CAS Key Laboratory of Carbon Materials (KLCMKFJJ2004)
More Information
    Author Bio:

    张明慧、徐文为共同第一作者

    Corresponding author: DONG Yan-feng, Associate Professor. E-mail: dongyanfeng@mail.neu.edu.cn
  • 摘要: 水系锌离子混合电容器(ZHCs)具有本征安全、低成本的优点,在大规模储能领域中具有广阔的应用前景。然而,传统的多孔炭正极具有不理想的孔结构,难以实现有效的锌离子的存储和扩散,此外锌箔负易遭受枝晶和副反应,因此传统ZHCs常表现出较低的能量密度和较短的循环寿命,严重制约其实际应用。二维过渡金属碳/氮化物(MXene)具有高导电基体和丰富表面官能团,为构筑ZHCs用高容量正极和长循环锌负极提供了新机遇。本文系统总结了高性能ZHCs用MXene基纳米材料的最新进展,先简要介绍了ZHCs的基础知识如工作原理和关键电化学参数,随后详细阐述了高性能ZHCs用MXene基正极(纯MXene、插层MXene、掺杂MXene、MXene基杂化材料(MXene/金属硫化物、MXene/炭、MXene/聚合物))和负极的研究进展,最后简要讨论了MXene基纳米材料在下一代ZHCs应用中的挑战和展望。
  • FIG. 1535.  FIG. 1535.

    FIG. 1535.. 

    Figure  1.  Main progress of MXene-based nanomaterials for ZHCs. (a) MXene was firstly obtained by selective etching of Al in Ti3AlC2 with HF acid[42] (Reprinted with permission by copyright 2011, Wiley). (b) MXene-reduced graphene oxide aerogels as the cathode[32](Reprinted with permission by copyright 2019, Wiley). (c) Sn4+ pre-embedded MXene cathode[33] (Reprinted with permission by copyright 2020, Wiley). (d) Nitrogen-doped MXene-based heterostructure cathode[34] (Reprinted with permission by copyright 2021, RSC). (e) Nanofibrillated cellulose adhered Ti3C2Tx flake cathode[35](Reprinted with permission by copyright 2022, Elsevier). (f) Zn nanosheets vertically deposited on Ti3C2 MXene [36] (Reprinted with permission by copyright 2019, ACS). (g) Ti3C2Tx MXene paper host for Zn [37] (Reprinted with permission by copyright 2021, ACS). (h) Heterolayer of MXene and ZnS on Zn[38] (Reprinted with permission by copyright 2021, ACS). (i) Ti3C2Tx MXene wrapped Zn powder[39] (Reprinted with permission by copyright 2021, ACS).

    Figure  2.  Schematic diagram of the applications of MXene based nanomaterials for aqueous zinc-ion hybrid capacitors.

    Figure  3.  Schematic of the storage mechanisms of (a) electric double layer capacitance, (b) redox pseudocapacitance, and (c) intercalation pseudocapacitance[44](Reprinted with permission by copyright 2021, Wiley). (d-e) Schematic diagrams of energy storage mechanisms of (d) the first type and (e) the second type ZHCs.

    Figure  4.  (a) Schematic diagram of 3DP MXene electrodes. (b) SEM image of 3DP MXene. (c) Specific capacitances based on mass and area at different current densities[62](Reprinted with permission by copyright 2021, ACS). (d) Schematic diagram of the preparation process of diamine-intercalated MXene. (e) SEM image of PDA-MXene. (f) Specific capacitances of MXene electrodes intercalated with different diamine molecules at different current densities. (g) Cycling performance of PDA-MXene electrodes at 1 A g−1[64](Reprinted with permission by copyright 2021, Wiley).

    Figure  5.  (a) Schematic diagram of preparation of Ti3C2Tx/BiCuS2.5. (b) Ragone plot of Ti3C2Tx/BiCuS2.5 and other reported electrodes. (c) Cycling performance of Ti3C2Tx/BiCuS2.5 electrodes at a current density of 20 A g−1[67](Reprinted with permission by copyright 2021, Elsevier).

    Figure  6.  (a) Schematic of the synthesis of V2C@CNTs. (b) SEM image of V2C@CNTs[68](Reprinted with permission by copyright 2019, Wiley). (c) SEM image of MXene-rGO[32] (Reprinted with permission by copyright 2019, Wiley). (d) Schematic of the synthesis of NMXC[34] (Reprinted with permission by copyright 2021, RSC).

    Figure  7.  (a) Schematic diagram of the preparation of a flexible layered Ti3C2Tx MXene@Zn paper. (b) Coulombic efficiency of Zn plating/stripping of Zn|Ti@Zn batteries and Zn|MXene@Zn batteries at an areal capacity of 1 mAh cm−2 and a current density of 1 mA cm−2[37](Reprinted with permission by copyright 2021, ACS). (c) Cycling performance of Zn//Ti3C2I2 and MCl-Zn//Ti3C2I2 batteries at a current density of 3 A g−1[82]. (Reprinted with permission by copyright 2022, ACS).

    Figure  8.  (a) Schematic of the synthesis of S/MX@ZnS@Zn. (b) Cycling performance of pristine Zn and S/MX@ZnS@Zn anodes at a rate of 0.5 mA cm−2 and an areal capacity of 0.5 mAh cm−2. SEM images of (c) pristine Zn anodes and S/MX@ZnS@Zn-350 anodes after 10 and 100 cycles[38] (Reprinted with permission by copyright 2021, ACS). (d) SEM image of MXene@Zn. (e) Nucleation overpotential of Zn-p and MXene@Zn at 1mA cm−2. (f) Long-cycle performance diagram of Zn-p and MXene@Zn symmetric batteries at 1 mA cm−2[39](Reprinted with permission by copyright 2021, ACS).

    Table  1.   A summary of various reported MXene based cathodes for ZHCs.

    Type of cathodeSampleVoltage (V)ElectrolyteCapacityCapacity retentionEnergy densityPower densityRef.
    MXenesTi3C2Tx0.05-1.352 M ZnSO4132 F g−1 at 0.5 A g−182.5% after 1000 cycles[36]
    Mo1.33CTz-Ti3C2Tz0.01-1.33 M Zn(CF3SO3)2115 mAh g−1 at 1 A g−190% after 8000 cycles103 Wh kg−10.143 KW kg−1[60]
    3D-PHMF0-1.32 M Zn(CF3SO3)2105.6 mAh g−1 at 0.2 A g−190% after 20000 cycles53.6 Wh kg−1104.5W kg−1[61]
    3DP MXene0.1-1.22 M ZnSO4259.7 F g−1 at 0.1 A g−186.5% over 6000 cycles0.10 mWh cm−25.90 mW cm−2[62]
    Ti3C2Tx (Fiber-
    shaped ZHCs )
    0-1.21.5 M ZnSO4214 mF cm−2 at 5 mV s−183.58% after 5000 cycles42.8 μWh cm−20.64 mW cm−2[63]
    Intercalated
    MXenes
    PDA-MXene0.2-1.12 M ZnSO4124.4 F g−1 at 0.2 A g−185% after 10000 cycles13.8 Wh kg−14500 W kg−1[64]
    In-situ pillared Ti3C20.2-1.20.1 M ZnSO473 mAh g−1 at 0.2 A g−196% after 1000 cycles[65]
    Sn4+-Ti2CTx/C0.1-2.02 M ZnSO4138 mAh g−1 at 0.1 A g−1>96% after 12500 cycles[33]
    Heteroatom-doped
    MXenes
    N-Ti3C20.05-1.21 M ZnSO4247.9 F g−1 at 0.1 A g−188.34% after 6000 cycles45.54 Wh kg−14093 W kg−1[66]
    MXene/metal
    sulfide hybrids
    Ti3C2Tx/
    Bi2S3@N-C
    0-1.4ZnSO4653 F g−1 at 1 A g−185.7% after 2000 cycles46.98 Wh kg−1750 W kg−1[51]
    Ti3C2Tx/BiCuS2.50-0.81 M ZnSO4840 C g−1 at 1 A g−182% after 10000 cycles298.4 Wh kg−17200 W kg−1[67]
    MXene/carbon
    hybrids
    V2C/CNTs0.1-1.11 M ZnSO490.2 F g−1 at 10 A g−1[68]
    MXene-rGO0.2-1.62 M ZnSO4128.6 F g−1 at 0.4 A g−195% after 75000 cycles34.9 Wh kg−1279.9 W kg−1[32]
    NMXC0.2-1.82 M ZnSO483.9 mAh g−1 at 0.1 A g−196.4 % after 10000 cycles64.5 Wh kg−13.9 kW kg−1[34]
    MXene/polymer
    hybrids
    MN-802 M ZnSO492.1 mAh g−1
    at 0.5 mA cm−2
    94.31% after 10000 cycles[35]
    MXene/BCF0-1.22 M Zn(CF3SO3)2
    /PAM gel
    178.6 mF cm−2

    at 0.5 mA cm−2
    72.3% after 3000 cycles34.0 μWh cm−2[69]
    MXene/BC@PPy0-1.92 M Zn(CF3SO3)2-0.1 M MnSO4/PAM
    hydrogel
    388 mF cm−2 at 1 mA cm−295.8% after 25000 cycles145.4 μWh cm−23.78 mW cm−2[70]
    Note: M: mol L−1
    下载: 导出CSV

    Table  2.   A summary of various reported MXene-based anodes for ZHCs.

    Role of MXenesAnode nameVoltage hysteresisNucleation overpotentialLife spanCoulombic efficiencyRef.
    Zn host materialsTi3C2Tx MXene@Zn75 mV
    (1 mA cm−2)
    83 mV300 h
    (1 mA cm−2)
    94.13% at 5 mA cm−2 (400 cycles)[37]
    MCl-Zn103 mV
    (10 mA cm−2)
    40.7 mV
    (1 mA cm−2)
    840 h
    (2 mA cm−2)
    99.50% at 1 mA cm−2 (50 cycles)[82]
    MGA@Zn64 mV
    (10 mA cm−2)
    1050 h
    (10 mA cm−2)
    ≈99.67% at 10 mA cm−2 (600 cycles)[83]
    Protecting layersS/MX@ZnS@Zn-3500.03 V
    (0.5 mA cm−2)
    1600 h
    (10 mA cm−2)
    [38]
    MXene-mPPy/Zn22 mV
    (0.2 mA cm−2)
    10 mV2500 h
    (0.2 mA cm−2)
    [84]
    AMX-Zn[81]
    MXene@Zn (Zn-p)30 mV
    (1 mA cm−2)
    27.4 mV
    (1 mA cm−2)
    200 h
    (1 mA cm−2)
    [31]
    下载: 导出CSV
  • [1] Chen H, Zheng Y, Zhu X Q, et al. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors[J]. Materials Research Bulletin,2021,139:111281. doi: 10.1016/j.materresbull.2021.111281
    [2] Han L, Huang H L, Li J F, et al. A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition[J]. Journal of Materials Chemistry A,2020,8(30):15042-15050. doi: 10.1039/D0TA03547E
    [3] Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review[J]. Advanced Energy Materials,2021,11(14):2003994. doi: 10.1002/aenm.202003994
    [4] Lu W, Yang Y, Zhang T, et al. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors[J]. Journal of Colloid and Interface Science,2021,590:226-237. doi: 10.1016/j.jcis.2021.01.050
    [5] Yuan Z, Wang H, Shen J, et al. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Materials Chemistry A,2020,8(42):22163-22174. doi: 10.1039/D0TA08006C
    [6] Zhang Z K, Zhang H X, Hou Y, et al. One-step synthesis of CeFeO3 nanoparticles on porous-rich nanocarbon frameworks derived from ZIF-8 for boosted oxygen reduction reaction in pH value universal electrolytes[J]. J Mater Chem A,2022. doi: 10.1039/D2TA02764J
    [7] Panja T, Ajuria J, Díez N, et al. Fabrication of high-performance dual carbon Li-ion hybrid capacitor: Mass balancing approach to improve the energy-power density and cycle life[J]. Scientific Reports,2020,10(1):1-11. doi: 10.1038/s41598-019-56847-4
    [8] Kim Y, Woo S C, Lee C S, et al. Electrochemical investigation on high-rate properties of graphene nanoplatelet-carbon nanotube hybrids for Li-ion capacitors[J]. Journal of Electroanalytical Chemistry,2020,863:114060. doi: 10.1016/j.jelechem.2020.114060
    [9] Luo S N, Yuan T, Soule L K, et al. Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors[J]. Advanced Functional Materials,2020,30(5):1908309. doi: 10.1002/adfm.201908309
    [10] Huang F, Liu W, Wang Q, et al. Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors[J]. Electrochimica Acta,2020,354:136701. doi: 10.1016/j.electacta.2020.136701
    [11] Li Y, Lu P, Shang P, et al. Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc-ion hybrid capacitors with remarkable rate capability[J]. Journal of Energy Chemistry,2021,56:404-411. doi: 10.1016/j.jechem.2020.08.005
    [12] Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials,2019,2(9):6490-6496. doi: 10.1021/acsaem.9b01063
    [13] Li H, Yang Q, Mo F, et al. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries[J]. Energy Storage Materials,2019,19:94-101. doi: 10.1016/j.ensm.2018.10.005
    [14] Mo F, Chen Z, Liang G, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities[J]. Advanced Energy Materials,2020,10(16):2000035. doi: 10.1002/aenm.202000035
    [15] Qian L, Yao W, Yao R, et al. Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery[J]. Advanced Functional Materials,2021,31(40):2105736. doi: 10.1002/adfm.202105736
    [16] Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-92. doi: 10.1016/S1872-5805(22)60579-1
    [17] Wang M, Che X G, Liu S Y, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials,2021,36(1):155-166.
    [18] Shang P, Liu M, Mei Y, et al. Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors[J]. Small,2022,18:2108057.
    [19] Wang S, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode[J]. Nano-Micro Letters,2019,11(1):1-12. doi: 10.1007/s40820-018-0235-z
    [20] Chaudhari N K, Jin H, Kim B, et al. MXene: An emerging two-dimensional material for future energy conversion and storage applications[J]. Journal of Materials Chemistry A,2017,5(47):24564-24579. doi: 10.1039/C7TA09094C
    [21] Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. doi: 10.1021/acs.chemmater.7b02847
    [22] Sang X, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano,2016,10(10):9193-9200. doi: 10.1021/acsnano.6b05240
    [23] Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide[J]. Advanced Functional Materials,2016,26(23):4162-4168. doi: 10.1002/adfm.201600357
    [24] Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances,2018,4(6):eaat0491. doi: 10.1126/sciadv.aat0491
    [25] Kong F, He X, Liu Q, et al. Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries[J]. Ceramics International,2018,44(10):11591-11596. doi: 10.1016/j.ceramint.2018.03.223
    [26] Maleski K, Mochalin V N, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [27] Firouzjaei M D, Karimiziarani M, Moradkhani H, et al. MXenes: The two-dimensional influencers[J]. Materials Today Advances,2022,13:100202.
    [28] Okubo M, Sugahara A, Kajiyama S, et al. MXene as a charge storage host[J]. Accounts of Chemical Research,2018,51(3):591-599. doi: 10.1021/acs.accounts.7b00481
    [29] Sun S, Liao C, Hafez A M, et al. Two-dimensional MXenes for energy storage[J]. Chemical Engineering Journal,2018,338:27-45. doi: 10.1016/j.cej.2017.12.155
    [30] Kumar P, Singh S, Hashmi S A R, et al. MXenes: Emerging 2D materials for hydrogen storage[J]. Nano Energy,2021,85:105989. doi: 10.1016/j.nanoen.2021.105989
    [31] Shinde P A, Patil A M, Lee S, et al. Two-dimensional MXenes for electrochemical energy storage applications[J]. Journal of Materials Chemistry A,2022,10:1105-1149. doi: 10.1039/D1TA04642J
    [32] Wang Q, Wang S, Guo X, et al. Mxene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537
    [33] Li X, Li M, Yang Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn-ion transportation and superior cycle lifespan[J]. Advanced Energy Materials,2020,10(35):2001394. doi: 10.1002/aenm.202001394
    [34] Cui H, Mi H, Ji C, et al. A durable MXene-based zinc-ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte[J]. Journal of Materials Chemistry A,2021,9(42):23941-23954. doi: 10.1039/D1TA06974H
    [35] Chen J, Chen H, Chen M, et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors[J]. Chemical Engineering Journal,2022,428:131380. doi: 10.1016/j.cej.2021.131380
    [36] Yang Q, Huang Z, Li X, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function[J]. ACS Nano,2019,13(7):8275-8283. doi: 10.1021/acsnano.9b03650
    [37] Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano,2019,13(10):11676-11685. doi: 10.1021/acsnano.9b05599
    [38] An Y, Tian Y, Liu C, et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries[J]. ACS Nano,2021,15(9):15259-15273. doi: 10.1021/acsnano.1c05934
    [39] Li X, Li Q, Hou Y, et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor[J]. ACS Nano,2021,15(9):14631-14642. doi: 10.1021/acsnano.1c04354
    [40] Wang H, Ye W, Yang Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [41] Yin J, Zhang W, Alhebshi N A, et al. Electrochemical zinc-ion capacitors: Fundamentals, materials, and systems[J]. Advanced Energy Materials,2021,11(21):2100201. doi: 10.1002/aenm.202100201
    [42] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [43] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environmental Science,2014,7(5):1597-1614. doi: 10.1039/c3ee44164d
    [44] Jagadale A D, Rohit R C, Shinde S K, et al. Materials development in hybrid zinc-ion capacitors[J]. ChemNanoMat,2021,7(10):1082-1098. doi: 10.1002/cnma.202100235
    [45] Wang L, Peng M, Chen J, et al. High energy and power zinc-ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism[J]. ACS Nano,2022,16(2):2877-2888. doi: 10.1021/acsnano.1c09936
    [46] Zhang H, Liu Q, Fang Y, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials,2019,31(44):1904948. doi: 10.1002/adma.201904948
    [47] Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    [48] Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    [49] Deng X, Li J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
    [50] Yin J, Zhang W, Wang W, et al. Electrochemical zinc-ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10(37):2001705. doi: 10.1002/aenm.202001705
    [51] Zhang W, Jiang H, Li Y, et al. Pizza-like heterostructured Ti3C2Tx/Bi2S3@NC with ultra-high specific capacitance as a potential electrode material for aqueous zinc-ion hybrid supercapacitors[J]. Journal of Alloys and Compounds,2021,883:160881. doi: 10.1016/j.jallcom.2021.160881
    [52] Mathis T S, Kurra N, Wang X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007
    [53] Balducci A, Belanger D, Brousse T, et al. Perspective-a guideline for reporting performance metrics with electrochemical capacitors: From electrode materials to full devices[J]. Journal of The Electrochemical Society,2017,164(7):A1487. doi: 10.1149/2.0851707jes
    [54] Wang C, Zeng X, Cullen P J, et al. The rise of flexible zinc-ion hybrid capacitors: Advances, challenges, and outlooks[J]. Journal of Materials Chemistry A,2021,9:19054-19082. doi: 10.1039/D1TA02775A
    [55] Brousse T, Bélanger D, Long J W. To be or not to be pseudocapacitive?[J]. Journal of The Electrochemical Society,2015,162(5):A5185. doi: 10.1149/2.0201505jes
    [56] Shao Y, Sun Z, Tian Z, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor[J]. Advanced Functional Materials,2021,31(6):2007843. doi: 10.1002/adfm.202007843
    [57] Chen Z, Li X, Wang D, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science,2021,14(6):3492-3501.
    [58] Li X, Li N, Huang Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene[J]. ACS Nano,2021,15(1):1718-1726. doi: 10.1021/acsnano.0c09380
    [59] Liu F, Jin S, Xia Q, et al. Research progress on construction and energy storage performance of MXene heterostructures[J]. Journal of Energy Chemistry,2021,62:220-242. doi: 10.1016/j.jechem.2021.03.017
    [60] Etman A S, Halim J, Rosen J. Mo1.33CTz-Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors[J]. Materials Today Energy,2021,22:100878. doi: 10.1016/j.mtener.2021.100878
    [61] Li F, Liu Y, Wang G G, et al. 3D porous H-Ti3C2Tx films as free-standing electrodes for zinc ion hybrid capacitors[J]. Chemical Engineering Journal,2022,435:135052. doi: 10.1016/j.cej.2022.135052
    [62] Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15(2):3098-3107. doi: 10.1021/acsnano.0c09646
    [63] Shi B, Li L, Chen A, et al. Continuous fabrication of Ti3C2Tx MXene-Based braided coaxial zinc-ion hybrid supercapacitors with improved performance[J]. Nano-Micro Letters,2022,14(1):1-10. doi: 10.1007/s40820-021-00751-y
    [64] Peng M, Wang L, Li L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability[J]. Advanced Functional Materials,2022,32:2109524. doi: 10.1002/adfm.202109524
    [65] Maughan P A, Tapia-Ruiz N, Bimbo N. In-situ pillared MXene as a viable zinc-ion hybrid capacitor[J]. Electrochimica Acta,2020,341:136061. doi: 10.1016/j.electacta.2020.136061
    [66] Jin Y, Ao H, Qi K, et al. A high-rate, long life, and anti-self-discharge aqueous N-doped Ti3C2/Zn hybrid capacitor[J]. Materials Today Energy,2021,19:100598. doi: 10.1016/j.mtener.2020.100598
    [67] Li Y, Zhang W, Yang X, et al. A high-voltage and high-capacity Ti3C2Tx/BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion hybrid capacitors[J]. Nano Energy,2021,87:106136. doi: 10.1016/j.nanoen.2021.106136
    [68] Wang C, Wei S, Chen S, et al. Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism[J]. Small Methods,2019,3(12):1900495. doi: 10.1002/smtd.201900495
    [69] Cao Z, Fu J, Wu M, et al. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density[J]. Energy Storage Materials,2021,40:10-21. doi: 10.1016/j.ensm.2021.04.047
    [70] Cheng W, Fu J, Hu H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Science,2021,8(16):2100775. doi: 10.1002/advs.202100775
    [71] Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage[J]. Carbon Energy,2021,4(1):60-76.
    [72] Li F, Liu Y L, Wang G G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries[J]. Journal of Materials Chemistry A,2021,9(15):9675-9684. doi: 10.1039/D0TA12009J
    [73] Zhang Y, Deng S, Pan G, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage[J]. Small Methods,2020,4(6):1900828. doi: 10.1002/smtd.201900828
    [74] Zhang Y Z, Wang Y, Jiang Q, et al. MXene printing and patterned coating for device applications[J]. Advanced Materials,2020,32(21):1908486. doi: 10.1002/adma.201908486
    [75] Fu K K, Cheng J, Li T, et al. Flexible batteries: From mechanics to devices[J]. ACS Energy Letters,2016,1(5):1065-1079. doi: 10.1021/acsenergylett.6b00401
    [76] Wang J, Wang J G, Liu H, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials,2021,31(7):2007397. doi: 10.1002/adfm.202007397
    [77] Li X, Ma X, Hou Y, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning[J]. Joule,2021,5(11):2993-3005. doi: 10.1016/j.joule.2021.09.006
    [78] Ding B, Ong W J, Jiang J, et al. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M=Ti, Mo)[J]. Applied Surface Science,2020,500:143987. doi: 10.1016/j.apsusc.2019.143987
    [79] Liu H, Wang J G, Hua W, et al. Building Ohmic contact interfaces toward ultrastable Zn metal anodes[J]. Advanced Science,2021,8(23):2102612. doi: 10.1002/advs.202102612
    [80] Liu H, Wang J G, You Z, et al. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives[J]. Materials Today,2021,42:73-98. doi: 10.1016/j.mattod.2020.08.021
    [81] Li Z, Guo D, Wang D, et al. Exploration of metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor[J]. Journal of Power Sources,2021,506:230197. doi: 10.1016/j.jpowsour.2021.230197
    [82] Li X, Li M, Luo K, et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes[J]. ACS Nano,2022,16:813-822. doi: 10.1021/acsnano.1c08358
    [83] Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials,2022,34:2106897. doi: 10.1002/adma.202106897
    [84] Zhang Y, Cao Z, Liu S, et al. Charge‐enriched strategy based on MXene-based polypyrrole layers toward dendrite-free Zinc metal anodes[J]. Advanced Energy Materials,2022,12:2103979. doi: 10.1002/aenm.202103979
    [85] Xue Y, Zhang Q, Wang W, et al. Opening two-dimensional materials for energy conversion and storage: A concept[J]. Advanced Energy Materials,2017,7(19):1602684. doi: 10.1002/aenm.201602684
    [86] Wu Z, Shang T, Deng Y, et al. The assembly of MXenes from 2D to 3D[J]. Advanced Science,2020,7(7):1903077. doi: 10.1002/advs.201903077
    [87] Li K, Liang M, Wang H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials,2020,30(47):2000842. doi: 10.1002/adfm.202000842
    [88] Liu Y H, Wang C Y, Yang S L, et al. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry,2022,66:429-439. doi: 10.1016/j.jechem.2021.08.040
    [89] Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materials,2021,36(6):1094-1102. doi: 10.1016/S1872-5805(21)60063-X
    [90] Xiong D, Shi Y, Yang H Y. Rational design of MXene-based films for energy storage: Progress, prospects[J]. Materials Today,2021,46:183-211. doi: 10.1016/j.mattod.2020.12.004
    [91] Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes[J]. Advanced Functional Materials,2020,30(45):2004613. doi: 10.1002/adfm.202004613
    [92] Zhan X, Si C, Zhou J, et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications[J]. Nanoscale Horizons,2020,5(2):235-258. doi: 10.1039/C9NH00571D
    [93] Zhan C, Naguib M, Lukatskaya M, et al. Understanding the MXene pseudocapacitance[J]. The Journal of Physical Chemistry Letters,2018,9(6):1223-1228. doi: 10.1021/acs.jpclett.8b00200
    [94] Wang X, Wang Z, Qiu J. Stabilizing MXene by hydration chemistry in aqueous solution[J]. Angewandte Chemie International Edition,2021,60(51):26587-26591. doi: 10.1002/anie.202113981
    [95] Li M, Li X, Qin G, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries[J]. ACS Nano,2021,15(1):1077-1085. doi: 10.1021/acsnano.0c07972
    [96] Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
    [97] Ren Z, Yu J, Li Y, et al. Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries[J]. Advanced Energy Materials,2018,8(12):1702467. doi: 10.1002/aenm.201702467
    [98] Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy,2019,62:550-587. doi: 10.1016/j.nanoen.2019.05.059
    [99] Huang H, Jiang R, Feng Y, et al. Recent development and prospects of surface modification and biomedical applications of MXenes[J]. Nanoscale,2020,12(3):1325-1338. doi: 10.1039/C9NR07616F
    [100] Riazi H, Anayee M, Hantanasirisakul K, et al. Surface modification of a MXene by an aminosilane coupling agent[J]. Advanced Materials Interfaces,2020,7(6):1902008. doi: 10.1002/admi.201902008
    [101] Wang D, Li F, Lian R, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries[J]. ACS Nano,2019,13(10):11078-11086. doi: 10.1021/acsnano.9b03412
    [102] Chao H, Qin H, Zhang M, et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets[J]. Advanced Functional Materials,2021,31(16):2007636. doi: 10.1002/adfm.202007636
    [103] Chen Q, Cao L, Wang H, et al. Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors[J]. Journal of Power Sources,2022,538:231586.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1944
  • HTML全文浏览量:  1262
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 修回日期:  2022-04-19
  • 网络出版日期:  2022-04-27
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回