留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage

CAO Hai-liang YANG Liang-tao ZHAO Min LIU Pei-zhi GUO Chun-li XU Bing-she GUO Jun-jie

曹海亮, 杨良滔, 赵敏, 刘培植, 郭春丽, 许并社, 郭俊杰. 硬炭微球/MXene柔性薄膜负极应用于高性能钠离子存储. 新型炭材料(中英文), 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4
引用本文: 曹海亮, 杨良滔, 赵敏, 刘培植, 郭春丽, 许并社, 郭俊杰. 硬炭微球/MXene柔性薄膜负极应用于高性能钠离子存储. 新型炭材料(中英文), 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4
CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi, GUO Chun-li, XU Bing-she, GUO Jun-jie. A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Mater., 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4
Citation: CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi, GUO Chun-li, XU Bing-she, GUO Jun-jie. A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Mater., 2022, 37(6): 1154-1162. doi: 10.1016/S1872-5805(22)60616-4

硬炭微球/MXene柔性薄膜负极应用于高性能钠离子存储

doi: 10.1016/S1872-5805(22)60616-4
基金项目: 国家自然科学基金(U1810204,U1910210,U21A20174),山西省应用基础研究计划青年科技研究基金(201901D211046,20210302123115)
详细信息
    通讯作者:

    曹海亮,E-mail:caohailiang@tyut.edu.cn

    郭俊杰,教授. E-mail:guojunjie@tyut.edu.cn

  • 中图分类号: TB33

A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage

Funds: This work was supported by the National Natural Science Foundation of China (U1810204, U1910210, U21A20174), Natural Science Foundation of Shanxi Province (201901D211046, 20210302123115), Special Foundation for Youth San Jin scholars
More Information
  • 摘要: 硬炭被认为是钠离子电池最有前景的负极材料,但在嵌钠/脱钠过程中的体积变化限制了硬炭的循环寿命。本文构建了一种无黏结剂、集流体的硬炭微球/MXene薄膜电极,并对其钠离子的存储性能进行了研究。以山西老陈醋为液相碳源,制备了单分散的硬炭微球(HCS)。利用二维Ti3C2Tx MXene纳米片作为多功能导电黏结剂制备了柔性薄膜电极。值得注意的是,受益于三维导电网络,Ti3C2Tx构建的薄膜电极具有346 mAhg−1的高比容量,优异的倍率性能和超过1000次的优异循环稳定性。如此优异的电化学性能表明该薄膜有望成为一种非常有前景的下一代柔性钠离子电池的负极。
  • FIG. 1963.  FIG. 1963.

    FIG. 1963..  FIG. 1963.

    Figure  1.  (a) A representative SEM image of HCS-1400. (b) TEM image of HCS-1400. (c) XRD patterns and (d) Raman spectra of HCS carbonized at different temperatures

    Figure  2.  Electrochemical performances of the HCS electrodes. (a) The first charge/discharge profiles. (b) Slope and plateau capacity contribution. (c) Rate performance of HCS at different current density. (d) Cycling stability of HCS

    Figure  3.  (a) Schematic for the preparation of HCS/MX film. (b) TEM image of MXene nanosheets. Structure characterization of the HCS/MX electrode. (c) XRD patterns, (d) SEM images from top view and (e) cross-sectional view. The insert in (d) is a photo of the flexible HCS/MX film

    Figure  4.  Na-storage behavior of HCS/MX film electrodes. (a) CV curves for initial three cycles of HCS-1400 and (b) HCS/MX-2 film. (c) Charge/discharge performance at 30 mA g−1. (d) Rate capability and (e) cycle performance at 200 mA g−1 for all the film electrodes. (f) Cycling stability of HCS/MX-2 film at 500 mA g−1

    Figure  5.  SEM images of HCS/MX-2 film from (a) top view and (b) cross-sectional view after 100 charge/discharge cycles

    Figure  6.  (a) CV curves of HCS/MX-2 film electrode at different scan rates. (b) Relationship between the scan rates and peak currents in logarithmic format. (c) Diffusion and capacitive- controlled contributions

  • [1] Wu F X, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews,2020,49(5):1569-1614. doi: 10.1039/C7CS00863E
    [2] Fan X L, Wang C S. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chemical Society Reviews,2021,50(18):10486-10566. doi: 10.1039/D1CS00450F
    [3] Li Y, Zhang J W, Chen Q G, et al. Emerging of heterostructure materials in energy storage: a review[J]. Advanced Materials,2021,33(27):2100855. doi: 10.1002/adma.202100855
    [4] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews,2017,46(12):3529-3614. doi: 10.1039/C6CS00776G
    [5] Shan Y Y, Li Y, Pang H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries[J]. Advanced Functional Materials,2020,30(23):2001298. doi: 10.1002/adfm.202001298
    [6] Xiao Y, Abbasi N M, Zhu Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials,2020,30(30):2001334. doi: 10.1002/adfm.202001334
    [7] Zhang T Y, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041
    [8] Pei L Y, Cao H L, Yang L T, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics,2020,26(11):5535-5542. doi: 10.1007/s11581-020-03723-1
    [9] Xiang X D, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials,2015,27(36):5343-5364. doi: 10.1002/adma.201501527
    [10] Chen S Q, Wu C, Shen L F, et al. Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials,2017,29:1700431. doi: 10.1002/adma.201700431
    [11] Jin T, Li H X, Zhu K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews,2020,49(48):2342-2377.
    [12] Lao M M, Zhang Y, Luo W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622
    [13] Shen L Y, Shi S S, Roy S, et al. Recent advances and optimization strategies on the electrolytes for hard carbon and P-based sodium-ion batteries[J]. Advanced Functional Materials,2021,31(4):2006066. doi: 10.1002/adfm.202006066
    [14] David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano,2014,8(2):1759-1770. doi: 10.1021/nn406156b
    [15] Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature communications,2013,4:2365. doi: 10.1038/ncomms3365
    [16] Li W, Zhou M, Li H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8(10):2916-2921.
    [17] Qi S H, Wu D X, Dong Y, et al. Cobalt-based electrode materials for sodium-ion batteries[J]. Chemical Engineering Journal,2019,370:185-207. doi: 10.1016/j.cej.2019.03.166
    [18] Li L, Zheng Y, Zhang S L, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy & Environmental Science,2018,11(9):2310-2340.
    [19] Dou X W, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Materials Today,2019,23:87-104. doi: 10.1016/j.mattod.2018.12.040
    [20] Ponrouch A, Goni A R, Palacin M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications,2013,27:85-88. doi: 10.1016/j.elecom.2012.10.038
    [21] Fang Y J, Yu X Y, Lou X W. Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter,2019,1(1):90-114. doi: 10.1016/j.matt.2019.05.007
    [22] Xiao B W, Rojo T, Li X L. Hard carbon as sodium-ion battery anodes: progress and challenges[J]. ChemSusChem,2019,12(1):133-144. doi: 10.1002/cssc.201801879
    [23] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-114. doi: 10.1016/S1872-5805(21)60008-2
    [24] Pei L Y, Yang L T, Cao H L, et al. Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries[J]. Electrochimica Acta,2020,364:137313. doi: 10.1016/j.electacta.2020.137313
    [25] Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid State Letters,2005,8(4):A222-A225. doi: 10.1149/1.1870612
    [26] Dahbi M, Kiso M, Kubota K, et al. Synthesis of hard carbon from argan shells for Na-ion batteries[J]. Journal of Materials Chemistry A,2017,5(20):9917-9928. doi: 10.1039/C7TA01394A
    [27] Pang J B, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [28] Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small 2018, 14(17): 1703419.
    [29] Zhang C F, Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials,2019,16:102-125. doi: 10.1016/j.ensm.2018.05.003
    [30] Yu L Y, Hu L F, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718
    [31] Huang X W, Wu P Y. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors[J]. Advanced Functional Materials,2020,30(12):1910048. doi: 10.1002/adfm.201910048
    [32] Sun N, Guan Z R X, Liu Y W, et al. Extended "adsorption-insertion" model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [33] Zhang N, Liu Q, Chen W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources,2018,378:331-337. doi: 10.1016/j.jpowsour.2017.12.054
    [34] Xia J L, Yan D, Guo L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials,2020,32(21):2000447. doi: 10.1002/adma.202000447
    [35] Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials,2019,29(51):1906282. doi: 10.1002/adfm.201906282
    [36] Jiang Y L, Zou G Q, Hong W W, et al. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries[J]. Nanoscale,2018,10(39):18786-18794. doi: 10.1039/C8NR05652H
    [37] Li H Y, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18(11):7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [38] He L, Sun Y R, Wang C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials,2020,35(4):420-427. doi: 10.1016/S1872-5805(20)60499-1
  • 加载中
图(7)
计量
  • 文章访问数:  764
  • HTML全文浏览量:  445
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-04-23
  • 网络出版日期:  2022-05-17
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回